
PROBLEM SET #2

Issued: Tuesday, Jan.31, 2012

Due: Tuesday, Feb.7, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Use inspection analysis to write expressions for the input resistance R_i , output resistance R_o , and gain v_o/v_I for each of the amplifiers in Fig PS2.1. For part (d), you need to consider two cases assuming: (1) r_o is very large; (2) r_o is on the same order as $(R_D//R_3)$. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , g_{mb} , r_π , r_o , β , etc.) for the transistors used. For each circuit, assume that all capacitors shown have infinite values.

- 2. If the emitter resistor R_E in Fig. PS2.2 can be absorbed into the transistor by redefining the small-signal parameters,
 - a. What is the redefined g'_m , r'_π and r'_o ?
 - b. What is the common-emitter small-signal current gain β'_o ?

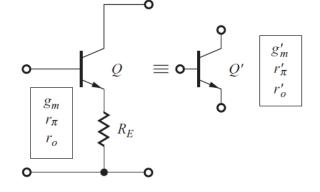


Fig. PS2.2

- 3. For the circuit in Fig. PS2.3, transistor Q_1 have $\beta = 20$ and transistor Q_2 have $\beta = 100$. Neglect the effect of r_o . Use $V_{BE} = 0.7$ V.
 - a. Find the DC emitter current of Q_1 and Q_2 . Also find the DC voltages V_{B1} and V_{B2} .
 - b. If a load resistance $R_L = 500 \ \Omega$ is connected to the output terminal, find the voltage gain from the base to the emitter of Q_2 , v_o/v_{b2} , and find the input resistance (R_{ib2}) looking into the base of Q_2 .
 - c. Analyze the circuit of emitter follower Q_l to determine its input resistance R_i , and the gain from its base to its emitter, v_{el}/v_{bl} .
 - d. If the circuit is fed with a source having a 100 k Ω resistance, find the overall voltage gain v_0/v_s including the resistances added in parts b.

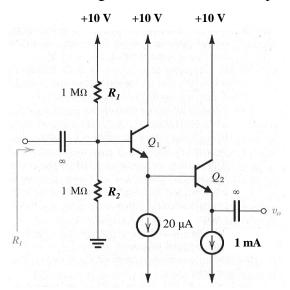
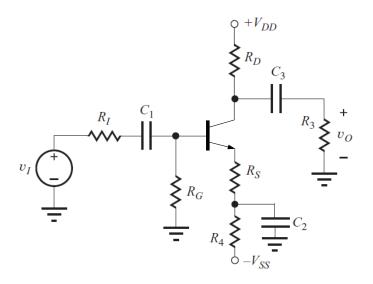



Fig. PS2.3

- 4. For the common-emitter stage shown schematically in Fig. PS2.4, assume R_I (source resistance) =330 Ω , R_G =100k Ω , R_S =150 Ω , R_4 =16k Ω , R_D =10k Ω , R_3 =220k Ω , + V_{DD} =5V, V_{SS} =-5V, and C_1 , C_2 , C_3 are all infinite. For the transistor, assume β_F =65, V_A =50V.
 - a. Calculate the DC operating point (I_C, V_{CE}) of the transistor.
 - b. Calculate the input resistance and output resistance.
 - c. What is the overall voltage gain for this common-emitter amplifier?

5. Find the DC operating point, voltage gain, input resistance, and output resistance of the amplifier shown in Fig. PS2.5 if $R_F = 1M\Omega$, $R_3 = 100k\Omega$, $k' = 100\mu A/V^2$, $V_{TN} = 1V$, $\lambda = 0.02$, $(W/L)_1 = 10/1$, $(W/L)_2 = 2/1$ and $V_{DD} = 5V$. Assume C_1 and C_2 infinite.

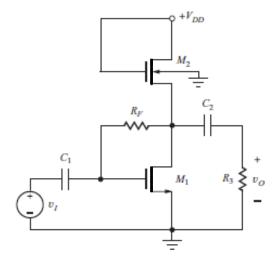


Fig. PS2.5