PROBLEM SET #3

Issued: Tuesday, Feb. 7, 2012

Due: Tuesday, Feb.14, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Estimate the f_L and f_H of a multistage amplifier shown in Fig. PS3.3. The transistor parameters are listed in the following table:

I			e			
	g_m	r_O	β_0	C_{GS}, C_{π}	C_{GD}, C_{μ}	r_g, r_b
M_1	10 mS	12 kΩ	∞	5 pF	1 pF	0Ω
Q_2	68 mS	55 kΩ	150	50 pF	1 pF	100 Ω
Q_3	80 mS	35 kΩ	80	50 pF	1 pF	100 Ω

Fig. PS3.1

- 2. For the small-signal circuits shown schematically in Fig. PS3.2, assume $R_s = 5k\Omega$, $R_L = 3k\Omega$, $C_L = 4pF$. For the transistors, assume $I_C = 1mA$, $\beta_F = 100$, $f_T = 500MHz$ (at $I_C = 1mA$), $C_{\mu} = 0.4pF$, $C_{cs} = 1pF$, $r_b = 0\Omega$, and $r_o = \infty$.
 - a. Calculate the low-frequency, small signal voltage gain v_o/v_i for each circuit.
 - b. Calculate and compare the 3-dB frequencies of the two circuits.

Fig. PS3.2

- 3. The ac schematic of a wideband MOS current amplifier is shown in Fig. PS3.3. The transistors have parameters $L_{drawn} = 3\mu m$, $L_d = 0.1\mu m$, $X_d = 0\mu m$, the length of the drain and source diffusion is $2L_{drawn}$ (L_{DE} and L_{SE} in the lecture module), $C_{j0} = 0.08 \text{ fF}/\mu m^2$, $C_{jsw0} = 0.5 \text{ fF}/\mu m$, n = 0.5, $\psi_0 = 0.65 \text{ V}$, $\mu_n = 700 \text{ cm}^2/\text{V-s}$, $t_{ox} = 400\text{ Å}$, $\lambda = 0$, and $V_t = 0.7 \text{ V}$. Size of transistors: $W_I = 9\mu m$, $W_2 = 36\mu m$. Both transistors use the minimum channel length. Assume the bias point at the gate of M_I is $V_{GI} = 1 \text{ V}$.
 - a. Calculate the low-frequency small-signal current gain i_o/i_i .
 - b. Estimate the -3-dB frequency.

- 4. A BJT differential amplifier shown in Fig. PS3.4 operating with a 1-mA current source I_{EE} uses transistor for which $\beta_F = 100$, $f_T = 600$ MHz, $C_{\mu} = 0.5$ pF, $r_b = 100\Omega$ and $r_o = \infty$. Both the input resistance R_S and load resistances R_L are 10k Ω .
 - a. Determine the low-frequency value of the overall differential gain. Estimate the -3-dB frequency f_H and the gain-bandwidth product.
 - b. Suppose the circuit is modified by including 100- Ω resistor R_E in each of the emitters. Determine the low-frequency value of the overall differential gain. And estimate the f_H and gain-bandwidth product.
 - c. From part (b), suppose you are requested to increase the 3-dB frequency of the differential amplifier to 1MHz by changing the value of the emitter resistance R_E (as the 100- Ω resistors in part (b)). Find the value of R_E to achieve this goal. What does the dc gain become? Also determine the resulting gain-bandwidth product.
 - d. Now, suppose the circuit in part (a) (with no R_E) is modified by eliminating the load resistor R_L of the left-hand-side transistor and the input signal (still series with the R_S) is fed to the base of the left-hand-side transistor while the base of the other transistor in the pair is grounded. Find the dc gain and f_H .

Fig. PS3.4