PROBLEM SET \#4

Issued: Tuesday, Feb.14, 2012
Due: Tuesday, Feb.21, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. (a) For the two BJT current mirror circuits shown in Fig. PS4.11, calculate the ideal mirror ratio $I_{O} / I_{\text {REF }}$ if (i) $V_{A}=\infty$ and $\beta_{F O}=\infty$. (ii) If $V_{A}=\infty$ and $\beta_{F O}=75$. (iii) If $V_{A}=60 \mathrm{~V}, \beta_{F O}=$ 75 , and $V_{B E}=0.7 \mathrm{~V}$. The symbol "A" stands for the relative sizes of the emitters of the BJTs.

Fig. PS4.11
(b) Calculate the mirror ratio $I_{O} / I_{\text {REF }}$ for the MOS current mirrors in the Fig PS4.12 for (i) $\lambda=0$; (ii) For $\lambda=0.02 \mathrm{~V}^{-1}$ if $V_{T N}=1 \mathrm{~V}, k^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $I_{\text {REF }}=50 \mu \mathrm{~A}$.

Fig PS4.12
(c) If a small ac voltage disturbance v_{n} is applied directly at the M_{1} gate as shown below in Fig PS4.13, what is the output current disturbance i_{n} due to v_{n} for (i) $\lambda=0$; (ii) $\lambda=0.02 \mathrm{~V}^{-1}$ if $V_{T N}=1 \mathrm{~V}, k=25 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $I_{R E F}=50 \mu \mathrm{~A}$.

Fig. PS4. 13
2. Calculate the gain of each circuit in Fig. PS4.2 at very low and very high frequencies. Neglect all other capacitances and assume $\lambda=\gamma=0$.

(a)

(b)

Fig. PS4.2
3. For the BJT Wildar current source shown in Fig. PS4.3, assume $V_{c c}=5 \mathrm{~V}, R_{1}=4.3 \mathrm{k} \Omega$, $V_{B E(o n)}=0.7 \mathrm{~V}$.
(a) Determine the proper value of R_{2} to give $I_{\text {out }}=5 \mathrm{~mA}$, assume $\beta_{F}=100$
(b) What is the output resistance of the current source, assume $V_{A}=80 \mathrm{~V}, \beta_{F}=100$.
(c) Determine the sensitivity of $I_{\text {out }}$ to the power-supply voltage $S_{V_{C C}}^{I_{O U T}}$. $\left(S_{V_{C C}}^{I_{O U T}}=\frac{V_{C C}}{I_{O U T}} \frac{\partial I_{O U T}}{\partial V_{C C}}\right)$

Fig. PS4.3
4. Calculate the mid-band small-signal gain and -3dB frequency of the circuit in Fig. PS4.4. Assume: $R_{S}=1 \mathrm{k} \Omega, R_{E}=75 \Omega, R_{3}=4 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, R_{I}=4 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega$, and $V_{C C}=V_{E E}$ $=10 \mathrm{~V}$. Device data are $\beta=200, V_{B E(o n)}=0.7 \mathrm{~V}, \tau_{F}=0.25 \mathrm{~ns}, r_{b}=200 \Omega, r_{c}$ (active region) $=150 \Omega, C_{j e o}=1.3 \mathrm{pF}, C_{\mu 0}=0.6 \mathrm{pF}, \psi_{0 c}=0.6 \mathrm{~V}, C_{c s 0}=2 \mathrm{pF}, \psi_{0_{s}}=0.58 \mathrm{~V}$, and $n_{s}=0.5$. Also you can assume $C_{j e}$ in forward active region equals $2 C_{j e 0}$.

Fig. PS4.4

