PROBLEM SET #4

Issued: Tuesday, Feb.14, 2012

Due: Tuesday, Feb.21, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. (a) For the two BJT current mirror circuits shown in Fig. PS4.11, calculate the ideal mirror ratio I_O/I_{REF} if (i) $V_A = \infty$ and $\beta_{FO} = \infty$. (ii) If $V_A = \infty$ and $\beta_{FO} = 75$. (iii) If $V_A = 60$ V, $\beta_{FO} = 75$, and $V_{BE} = 0.7$ V. The symbol "A" stands for the relative sizes of the emitters of the BJTs.

Fig. PS4.11

(b) Calculate the mirror ratio I_O/I_{REF} for the MOS current mirrors in the Fig PS4.12 for (i) $\lambda=0$; (ii) For $\lambda = 0.02 \text{ V}^{-1}$ if $V_{TN} = 1 \text{ V}$, $k = 25 \text{ } \mu\text{A/V}^2$, and $I_{REF} = 50 \text{ } \mu\text{A}$.

(c) If a small ac voltage disturbance v_n is applied directly at the M₁ gate as shown below in Fig PS4.13, what is the output current disturbance i_n due to v_n for (i) λ =0; (ii) λ = 0.02 V⁻¹ if $V_{TN} = 1$ V, $k = 25 \mu A/V^2$, and $I_{REF} = 50 \mu A$.

Fig. PS4.13

2. Calculate the gain of each circuit in Fig. PS4.2 at very low and very high frequencies. Neglect all other capacitances and assume $\lambda = \gamma = 0$.

Fig. PS4.2

- 3. For the BJT Wildar current source shown in Fig. PS4.3, assume $V_{cc}=5$ V, $R_1 = 4.3$ k Ω , $V_{BE(on)} = 0.7$ V.
 - (a) Determine the proper value of R_2 to give $I_{out} = 5$ mA, assume $\beta_F = 100$
 - (b) What is the output resistance of the current source, assume V_A =80V, β_F =100.
 - (c) Determine the sensitivity of I_{out} to the power-supply voltage $S_{V_{CC}}^{I_{OUT}}$. $(S_{V_{CC}}^{I_{OUT}} = \frac{V_{CC}}{I_{OUT}} \frac{\partial I_{OUT}}{\partial V_{CC}})$

Fig. PS4.3

4. Calculate the mid-band small-signal gain and -3dB frequency of the circuit in Fig. PS4.4. Assume: $R_S = 1 \text{ k}\Omega$, $R_E = 75 \Omega$, $R_3 = 4 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$, $R_I = 4 \text{ k}\Omega$, $R_2 = 10\text{k}\Omega$, and $V_{CC} = V_{EE}$ = 10V. Device data are $\beta = 200$, $V_{BE(on)} = 0.7 \text{ V}$, $\tau_F = 0.25 \text{ ns}$, $r_b = 200 \Omega$, r_c (active region) = 150 Ω , $C_{jeo} = 1.3 \text{ pF}$, $C_{\mu0} = 0.6 \text{ pF}$, $\psi_{0c} = 0.6 \text{ V}$, $C_{cs0} = 2\text{pF}$, $\psi_{0s} = 0.58 \text{ V}$, and $n_s = 0.5$. Also you can assume C_{je} in forward active region equals $2C_{je0}$.

Fig. PS4.4