PROBLEM SET #5

Issued: Tuesday, Feb. 21, 2012

Due: Tuesday, Feb.28, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. For the two current sources shown in Fig. PS5.1, assume $R = 68k\Omega$, $\beta_f = 50$, $V_A = 60V$, and $V_{BE(on)} = 0.7V$, calculate the output currents (I_{O2} and I_{O3}) and the corresponding output resistances for each circuit. For the circuit in Fig. PS5.1(b), assume $V_A = \infty$.

Fig. PS5.1

- 2. For the current source circuit shown in Fig. PS5.2, assume $V_t = 0.7$ V, $k' = 110 \mu$ A/V², $\gamma = 0.4$, $\lambda = 0.04$, $2|\phi_f| = 0.7$.
 - a) For Fig.PS5.2 (a), calculate the bias V_{b1} in order to achieve an output current $I_{out} = 10 \mu A$.
 - b) Continuing from part a), calculate the output resistance and the minimum output voltage required to keep the transistor in saturation in the circuit of Fig. PS5.2 (a).
 - c) Suppose the source degenerated resistor in Fig. PS5.2 (a) is replaced by a transistor M_2 as shown in Fig. PS5.2 (b). Design the size of M_2 to achieve $I_{out} = 10\mu$ A with the same output resistance as the circuit in Fig. PS5.2 (a). Calculate the required bias voltage V_{b2} . What is the minimum output voltage required to keep the transistors in saturation?

Fig. PS5.2

- 3. For the current source circuit shown in Fig. PS5.3, assume $V_t = 0.7$ V, $k' = 110 \mu$ A/V², $\gamma = 0.4$, $\lambda = 0.04, 2|\phi_f| = 0.7$.
 - a) For Fig. PS5.3 (a), design the size of M_4 to achieve the minimum output voltage $2V_{OV, MI}$. (You may ignore body effect for this part.)
 - b) From part a), considering the body effect, what is the minimum output voltage that ensures all transistors are in saturation region? What is the output resistance?
 - c) Suppose the reference current sources are reduced by half as shown in Fig. PS 5.3 (b). Size M_3 and M_4 to achieve the same output current as that of the circuit in Fig. PS 5.3 (a).

4. In the circuit of Fig. PS5.4, a source follower using a wide transistor M₄ and a small bias current I₁ is inserted in series with the gate of M₃ so as to bias M₂ at the edge of saturation. Assuming M₀-M₃ are identical with a size of (W₀/L₀) and λ ≠ 0, write an expression for I_{out} / I_{REF} for a) γ= 0; b) γ≠0.

Fig. PS5.4