PROBLEM SET \#5

Issued: Tuesday, Feb. 21, 2012
Due: Tuesday, Feb.28, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. For the two current sources shown in Fig. PS5.1, assume $R=68 \mathrm{k} \Omega, \beta_{f}=50, V_{A}=60 \mathrm{~V}$, and $V_{B E(o n)}=0.7 \mathrm{~V}$, calculate the output currents ($I_{O 2}$ and $I_{O 3}$) and the corresponding output resistances for each circuit. For the circuit in Fig. PS5.1(b), assume $V_{A}=\infty$.

Fig. PS5.1
2. For the current source circuit shown in Fig. PS5.2, assume $V_{t}=0.7 \mathrm{~V}, k^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0.4$, $\lambda=0.04,2\left|\phi_{f}\right|=0.7$.
a) For Fig.PS5.2 (a), calculate the bias $V_{b 1}$ in order to achieve an output current $I_{o u t}=10 \mu \mathrm{~A}$.
b) Continuing from part a), calculate the output resistance and the minimum output voltage required to keep the transistor in saturation in the circuit of Fig. PS5.2 (a).
c) Suppose the source degenerated resistor in Fig. PS5.2 (a) is replaced by a transistor M_{2} as shown in Fig. PS5.2 (b). Design the size of M_{2} to achieve $I_{\text {out }}=10 \mu \mathrm{~A}$ with the same output resistance as the circuit in Fig. PS5.2 (a). Calculate the required bias voltage $V_{b 2}$. What is the minimum output voltage required to keep the transistors in saturation?

Fig. PS5.2
3. For the current source circuit shown in Fig. PS5.3, assume $V_{t}=0.7 \mathrm{~V}, k^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0.4$, $\lambda=0.04,2\left|\phi_{f}\right|=0.7$.
a) For Fig. PS5.3 (a), design the size of M_{4} to achieve the minimum output voltage $2 V_{O V, M 1}$. (You may ignore body effect for this part.)
b) From part a), considering the body effect, what is the minimum output voltage that ensures all transistors are in saturation region? What is the output resistance?
c) Suppose the reference current sources are reduced by half as shown in Fig. PS 5.3 (b). Size M_{3} and M_{4} to achieve the same output current as that of the circuit in Fig. PS 5.3 (a).

(a)

(b)

Fig. PS5.3
4. In the circuit of Fig. PS5.4, a source follower using a wide transistor M_{4} and a small bias current I_{1} is inserted in series with the gate of M_{3} so as to bias M_{2} at the edge of saturation. Assuming $M_{0}-M_{3}$ are identical with a size of $\left(W_{0} / L_{0}\right)$ and $\lambda \neq 0$, write an expression for $I_{\text {out }} /$ $I_{\text {REF }}$ for a) $\gamma=0$; b) $\gamma \neq 0$.

Fig. PS5.4

