PROBLEM SET #7

Issued: Tuesday, Mar. 6, 2012

Due: Tuesday, Mar. 13, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Use inspection analysis to write an expression for the gain v_{out}/v_{in} for each of the amplifiers in Fig. PS7.1. The expression should be in terms of the small signal equivalent circuits (i.e., g_m , g_{mb} , r_{π} , r_o , β , etc.) for the transistors used. Assume the transistors are matched and neglect the parasitic capacitances of transistors.

Fig. PS7.1

- 2. For the BJT differential amplifier shown in Fig. PS7.2, assume $V_T = 25$ mV and $V_A \rightarrow \infty$:
 - (a) Write an expression in terms of $(I_{TAIL}R_C)$ for the differential gain.
 - (b) Write an expression for the maximum permitted value for the input common mode voltage V_{CM} while the transistors remain comfortably in the active region with their collector voltages not lower than their base voltages (i.e., $V_{CB} \ge 0$). Express this maximum in terms of V_{CC} and the differential gain obtained in (a) and hence show that for a given value of V_{CC} , the higher the gain achieved, the lower the input common-mode range.
 - (c) Assume $R_C = 5k\Omega$, $R_{TAIL} = 1M\Omega$, and $I_{TAIL} = 1mA$. Suppose two small signals are fed to the bases of the two input transistors with $v_{iI} = 2v_{i2} = 5mV$. Calculate the output common mode voltage v_{oc} , and differential output voltage v_{od} .
 - (d) Assuming $I_{TAIL} = 0$ (i.e., only R_{TAIL} exists) and $\beta = 200$, select values of R_C and R_{TAIL} to give a differential input resistance of 2M Ω , a differential voltage gain of 500, and a CMRR of 500.
 - (e) Assume the βs of two transistors are β_1 and β_2 and everything else is matched. Show that the input offset voltage is approximately $V_T \times [|(1/\beta_1) (1/\beta_2)|]$.
 - (f) Assume the collector load resistors R_C and the scale currents I_S of the transistors are mismatched by 10%. Calculate the input offset voltage.

- (g) Suppose a design error has resulted in a gross mismatch in the circuit where Q_1 has an emitter-base junction area twice that of Q_2 . Assuming the input signal is a small differential signal, express I_{C1} and I_{C2} in terms of I_{TAIL} .
- (h) Continuing from (g), if $R_C = 5k\Omega$, $R_{TAIL} = 1M\Omega$ and $I_{TAIL} = 1mA$, calculate A_{cm} , A_{cm-dm} , and A_{dm} . Assume β is very large.

Fig. PS7.2

- 3. The op amp in the circuit of Fig. PS7.3 has an open-loop gain of 10,000, an offset voltage of 1mV, and an input-bias current of 100nA.
 - (a) What is the output voltage if the op amp is ideal?
 - (b) What is the actual output voltage for the worst-case polarity of offset voltage?
 - (c) What is the worst-case percentage error in the output voltage compared to the ideal output voltage?
 - (d) Assuming the op amp has a finite 3dB frequency of 100 kHz, estimate the closed loop 3dB frequency.

Fig. PS7.3

- 4. For the differential amplifier with current mirror load shown in Fig. PS7.4(a), assume all transistors have the same $k'W/L = 3.2 \text{ mA/V}^2$, and $\lambda = 0.05$. Neglect body effect.
 - (a) Find the required bias current *I* for a gain $v_o/v_{id} = 80$ V/V for the circuit in Fig. PS7.4(a).
 - (b) Suppose the ideal current source is implemented in two cases: (1) a simple current mirror as shown in Fig. PS7.4(b); (2) a cascade current mirror as shown in Fig. PS7.4(c). Assume I_{REF} is adjusted to the bias current obtained in part (a). Find the CMRR for both cases.

Fig. PS7.4