PROBLEM SET \#7

Issued: Tuesday, Mar. 6, 2012
Due: Tuesday, Mar. 13, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Use inspection analysis to write an expression for the gain $v_{\text {out }} / v_{\text {in }}$ for each of the amplifiers in Fig. PS7.1. The expression should be in terms of the small signal equivalent circuits (i.e., $g_{m}, g_{m b}, r_{\pi}, r_{o}, \beta$, etc.) for the transistors used. Assume the transistors are matched and neglect the parasitic capacitances of transistors.

Fig. PS7. 1
2. For the BJT differential amplifier shown in Fig. PS7.2, assume $V_{T}=25 \mathrm{mV}$ and $V_{A} \rightarrow \infty$:
(a) Write an expression in terms of $\left(I_{T A I L} R_{C}\right)$ for the differential gain.
(b) Write an expression for the maximum permitted value for the input common mode voltage $V_{C M}$ while the transistors remain comfortably in the active region with their collector voltages not lower than their base voltages (i.e., $V_{C B} \geq 0$). Express this maximum in terms of $V_{C C}$ and the differential gain obtained in (a) and hence show that for a given value of $V_{C C}$, the higher the gain achieved, the lower the input commonmode range.
(c) Assume $R_{C}=5 \mathrm{k} \Omega, R_{\text {TAIL }}=1 \mathrm{M} \Omega$, and $I_{\text {TAIL }}=1 \mathrm{~mA}$. Suppose two small signals are fed to the bases of the two input transistors with $v_{i 1}=2 v_{i 2}=5 \mathrm{mV}$. Calculate the output common mode voltage $v_{o c}$, and differential output voltage $v_{o d}$.
(d) Assuming $I_{T A I L}=0$ (i.e., only $R_{T A I L}$ exists) and $\beta=200$, select values of R_{C} and $R_{T A I L}$ to give a differential input resistance of $2 \mathrm{M} \Omega$, a differential voltage gain of 500 , and a CMRR of 500.
(e) Assume the βs of two transistors are β_{1} and β_{2} and everything else is matched. Show that the input offset voltage is approximately $V_{T} \times\left[\left|\left(1 / \beta_{I}\right)-\left(1 / \beta_{2}\right)\right|\right]$.
(f) Assume the collector load resistors R_{C} and the scale currents I_{S} of the transistors are mismatched by 10%. Calculate the input offset voltage.
(g) Suppose a design error has resulted in a gross mismatch in the circuit where Q_{1} has an emitter-base junction area twice that of Q_{2}. Assuming the input signal is a small differential signal, express $I_{C 1}$ and $I_{C 2}$ in terms of $I_{T A I L}$.
(h) Continuing from (g), if $R_{C}=5 \mathrm{k} \Omega, R_{T A I L}=1 \mathrm{M} \Omega$ and $I_{T A I L}=1 \mathrm{~mA}$, calculate $A_{c m}, A_{c m-d m}$, and $A_{d m}$. Assume β is very large.

Fig. PS7. 2
3. The op amp in the circuit of Fig. PS7.3 has an open-loop gain of 10,000 , an offset voltage of 1 mV , and an input-bias current of 100 nA .
(a) What is the output voltage if the op amp is ideal?
(b) What is the actual output voltage for the worst-case polarity of offset voltage?
(c) What is the worst-case percentage error in the output voltage compared to the ideal output voltage?
(d) Assuming the op amp has a finite 3 dB frequency of 100 kHz , estimate the closed loop 3 dB frequency.

Fig. PS7.3
4. For the differential amplifier with current mirror load shown in Fig. PS7.4(a), assume all transistors have the same $k^{\prime} W / L=3.2 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0.05$. Neglect body effect.
(a) Find the required bias current I for a gain $v_{o} / v_{i d}=80 \mathrm{~V} / \mathrm{V}$ for the circuit in Fig. PS7.4(a).
(b) Suppose the ideal current source is implemented in two cases: (1) a simple current mirror as shown in Fig. PS7.4(b); (2) a cascade current mirror as shown in Fig. PS7.4(c). Assume $I_{\text {REF }}$ is adjusted to the bias current obtained in part (a). Find the CMRR for both cases.

Fig. PS7. 4

