PROBLEM SET \#8

Issued: Tuesday, Mar.13, 2012
Due: Tuesday, Mar.20, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. In the circuit of Fig. PS8.1, assume $(W / L)_{1-4}=100 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, C_{1}=C_{2}=0.5 \mathrm{pF}, I_{S S}=1 \mathrm{~mA}$, $\mu_{n}=350 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, \mu_{p}=100 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, t_{o x}=9 \mathrm{~nm}, \varepsilon_{r}=3.9, L_{d}=0.08 \mu \mathrm{~m}$ and $L_{\text {eff }}=L-2 L_{d}$.
(a) If a step voltage (as shown) is applied to the input of this circuit, find an expression for the time constant of its output response in terms of $g_{m 1-4}, r_{o l-4}, C_{1}$ and C_{2}.
(b) What is the slew rate of this circuit? With a $1-\mathrm{V}$ step at the input, how long does it take for $I_{D 2}$ to reach $0.1 I_{S S}$? Before $I_{D 2}$ reaches $0.1 I_{S S}$, you can assume that the current through C_{1} and C_{2} roughly equals to $I_{S S}$.

Fig. PS8. 1
2. Fig. PS8.2 shows a multi-stage CMOS amplifier driving a capacitive load with value of C_{L}.

Fig. PS8. 2
(a) Determine the common-mode input range in terms of $V_{D D}$ and $V_{S S}$. What is the minimum supply voltage difference that can satisfy this common-mode input range requirement?

Assume that all the transistors are enhancement-mode devices with $\left|V_{t}\right|=1 \mathrm{~V}$, and ignore the body effect. Also assume that the biasing is arranged so that $\left|V_{o v}\right|=0.2 \mathrm{~V}$ for each transistor except M_{9}. Finally, assume that M_{1} and M_{2} are biased at the edge of the active region by M_{9} and I_{C}.
(b) Determine an expression for the -3 dB bandwidth of the circuit in terms of $C_{L}, I_{b i a s}, I_{c}, \lambda_{p}$, λ_{n}. Assume that the pole at the output node is the dominant pole and ignore all other capacitances except C_{L}.
(c) Now the load capacitor C_{L} is replaced by a capacitor C_{C} between $M_{4 A}$ drain and the output node (as shown with red dashed line in Fig. PS8.2). Determine an expression for C_{C} that can keep the same -3 dB bandwidth as you calculated in part (b).
3. In this problem, we design a two-stage op amp based on the topology shown in Fig. PS8.3. Assume a power budget of 6 mW , a required output swing of 2.5 V , and a power supply $V_{D D}=3 \mathrm{~V}$. For all devices, $L_{\text {eff }}=0.5 \mu \mathrm{~m}, \mu_{n}=350 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, \mu_{p}=100 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, \lambda_{n}=0.1 \mathrm{~V}^{-1}, \lambda_{p}=0.2$ $\mathrm{V}^{-1}, C_{o x}=3.836 \mathrm{fF} / \mu \mathrm{m}^{2} .\left|V_{T H p}\right|=0.8 \mathrm{~V},\left|V_{T H n}\right|=0.7 \mathrm{~V}$. You can neglect the body effect.
(a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M_{5} and M_{6}, determine $(W / L)_{5}$ and $(W / L)_{6}$. Note that the gate-source capacitance of M_{5} is in the signal path whereas that of M_{6} is not. Thus, M_{6} can be quite a bit larger than M_{5}.
(b) Calculate the small-signal gain of the second stage.
(c) With the remaining 1 mA flowing through M_{7}, determine the aspect ratio of M_{3} (and M_{4}) such that $V_{G S 3}=V_{G S 5}$. This is to guarantee that if $V_{i n}=0$ and hence $V_{X}=V_{Y}$, then M_{5} carries the expected current.
(d) Calculate the aspect ratios of M_{1} and M_{2} such that the overall voltage gain of the op amp equals to 500 .
(e) Identify the positive and negative input of the circuit and connect this op amp in unitygain feedback.
(f) What is the allowable input voltage range? Assume $\left|V_{G S 7}-V_{T H 7}\right|=0.4 \mathrm{~V}$.

Fig. PS8. 3
4. Fig. PS8.4(a) shows the input stage and second stage schematic of the classic $\mu \mathrm{A} 741$ operational amplifier. Assume $V_{C C}=V_{E E}=15 \mathrm{~V}, \eta_{n p n}=2 \times 10^{-4}, \eta_{p n p}=5 \times 10^{-4}, \beta_{F 0}=250$ and $I_{s}=1 \times 10^{-14} \mathrm{~A}$.
(a) For the op amp bias circuit shown in Fig. PS8.4(b), calculate $I_{R E F}, I_{2}$ and I_{1}. You can assume $\beta=\infty$ and $V_{A}=\infty$ for transistor Q_{10-13} in this part.
(b) Calculate the overall small signal voltage gain of this op amp.

Fig. PS8. 4

