PROBLEM SET #8

Issued: Tuesday, Mar.13, 2012

Due: Tuesday, Mar.20, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

- 1. In the circuit of Fig. PS8.1, assume $(W/L)_{I-4}=100\mu m/0.5\mu m$, $C_I = C_2 = 0.5 \text{ pF}$, $I_{SS} = 1 \text{ mA}$, $\mu_n = 350 \text{ cm}^2/\text{V/s}$, $\mu_p = 100 \text{ cm}^2/\text{V/s}$, $t_{ox} = 9 \text{ nm}$, $\varepsilon_r = 3.9$, $L_d = 0.08\mu \text{m}$ and $L_{eff} = L-2L_d$.
 - (a) If a step voltage (as shown) is applied to the input of this circuit, find an expression for the time constant of its output response in terms of g_{m1-4} , r_{o1-4} , C_1 and C_2 .
 - (b) What is the slew rate of this circuit? With a 1-V step at the input, how long does it take for I_{D2} to reach $0.1I_{SS}$? Before I_{D2} reaches $0.1I_{SS}$, you can assume that the current through C_1 and C_2 roughly equals to I_{SS} .

Fig. PS8.1

2. Fig. PS8.2 shows a multi-stage CMOS amplifier driving a capacitive load with value of C_L .

(a) Determine the common-mode input range in terms of V_{DD} and V_{SS} . What is the minimum supply voltage difference that can satisfy this common-mode input range requirement?

Assume that all the transistors are enhancement-mode devices with $|V_t| = 1$ V, and ignore the body effect. Also assume that the biasing is arranged so that $|V_{ov}| = 0.2$ V for each transistor except M_9 . Finally, assume that M_1 and M_2 are biased at the edge of the active region by M_9 and I_C .

- (b) Determine an expression for the -3dB bandwidth of the circuit in terms of C_L , I_{bias} , I_c , λ_p , λ_n . Assume that the pole at the output node is the dominant pole and ignore all other capacitances except C_L .
- (c) Now the load capacitor C_L is replaced by a capacitor C_C between M_{4A} drain and the output node (as shown with red dashed line in Fig. PS8.2). Determine an expression for C_C that can keep the same -3dB bandwidth as you calculated in part (b).
- 3. In this problem, we design a two-stage op amp based on the topology shown in Fig. PS8.3. Assume a power budget of 6 mW, a required output swing of 2.5 V, and a power supply $V_{DD}=3V$. For all devices, $L_{eff} = 0.5 \,\mu\text{m}$, $\mu_n = 350 \text{cm}^2/\text{V/s}$, $\mu_p = 100 \text{cm}^2/\text{V/s}$, $\lambda_n = 0.1 \text{ V}^{-1}$, $\lambda_p = 0.2 \text{ V}^{-1}$, $C_{ox}=3.836 \text{fF}/\mu\text{m}^2$. $|V_{THp}| = 0.8 \text{ V}$, $|V_{THn}| = 0.7 \text{ V}$. You can neglect the body effect.
 - (a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M_5 and M_6 , determine $(W/L)_5$ and $(W/L)_6$. Note that the gate-source capacitance of M_5 is in the signal path whereas that of M_6 is not. Thus, M_6 can be quite a bit larger than M_5 .
 - (b) Calculate the small-signal gain of the second stage.
 - (c) With the remaining 1 mA flowing through M_7 , determine the aspect ratio of M_3 (and M_4) such that $V_{GS3} = V_{GS5}$. This is to guarantee that if $V_{in} = 0$ and hence $V_X = V_Y$, then M_5 carries the expected current.
 - (d) Calculate the aspect ratios of M_1 and M_2 such that the overall voltage gain of the op amp equals to 500.
 - (e) Identify the positive and negative input of the circuit and connect this op amp in unitygain feedback.
 - (f) What is the allowable input voltage range? Assume $|V_{GS7}-V_{TH7}| = 0.4 \text{ V}$.

Fig. PS8.3

EE 140

- 4. Fig. PS8.4(a) shows the input stage and second stage schematic of the classic μ A741 operational amplifier. Assume $V_{CC}=V_{EE}=15$ V, $\eta_{npn}=2\times10^{-4}$, $\eta_{pnp}=5\times10^{-4}$, $\beta_{F0}=250$ and $I_s=1\times10^{-14}$ A.
 - (a) For the op amp bias circuit shown in Fig. PS8.4(b), calculate I_{REF} , I_2 and I_1 . You can assume $\beta = \infty$ and $V_A = \infty$ for transistor Q_{10-13} in this part.
 - (b) Calculate the overall small signal voltage gain of this op amp.

Fig. PS8.4