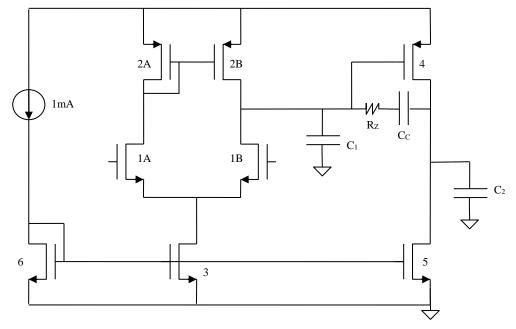
EECS140 Midterm 2


Spring 2017

Name		
mame		

SID			

Prob.	Score
1а-е	/10
1f-l	/25
2, 3	/30
4	/15
Total	/80

- 1) Unless otherwise indicated, you may make the following assumptions:
 - All transistors are biased in saturation with V_{ov}=0.2V
 - $V_{DD}=3V$, $V_{tn}=1V$, $V_{tp}=-1V$
 - M3, and M6 are identical, M5 is 10 times wider
 - All capacitors are assumed to be zero except C_C , C_1 , and C_2 .

- a. What is the common mode input range (min and max)?
- b. What is the output swing (min and max)?
- c. If $C_1=0$, $C_2=1$ pF, and $C_c=1$ pF, what is the positive slew rate?
- d. If $C_1=0$, $C_2=2$ pF, and $C_c=1$ pF, what is the negative slew rate?
- e. If C_1 =0, C_2 =1,000 pF, and C_c =1 pF, what is the negative slew rate?

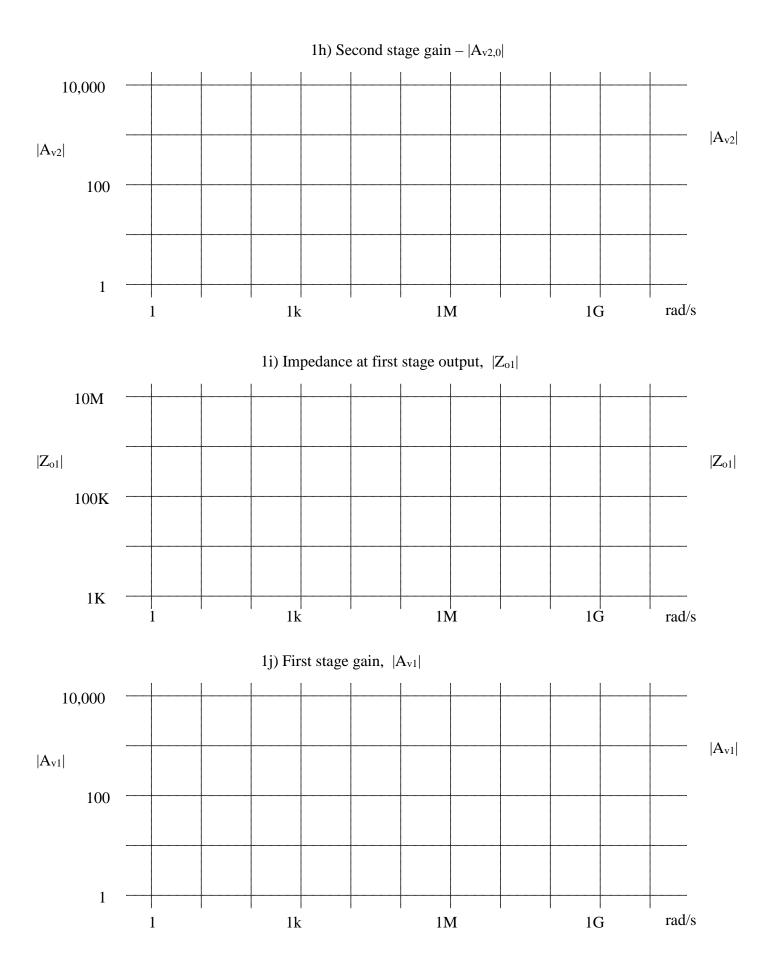
A different amplifier with the same topology has the following parameters. You may ignore the pole/zero doublet from the mirror.

g _{m1,2}	R _{o1}	g _{m4}	R _{o2}	C_1	C _C	C_2
1mS	1M	1mS	100k	10p	1p	100p

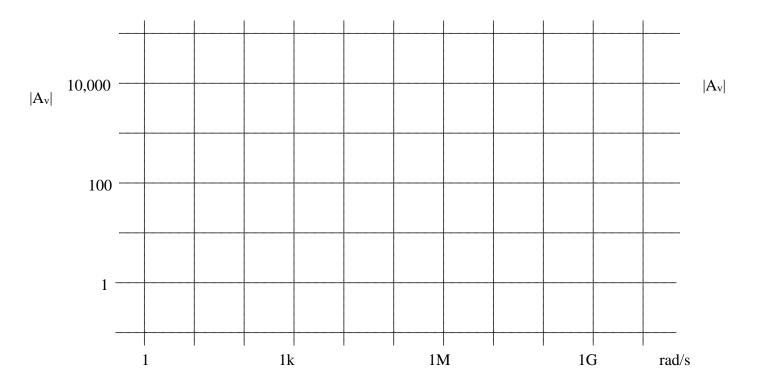
f.	If Cc=0 (magically we will a	assume no Cgd4	for this part only	y), what are the
	uncompensated poles?	$\omega_{p1,u}=$	$\omega_{p2,u}=$	

On the following pages,

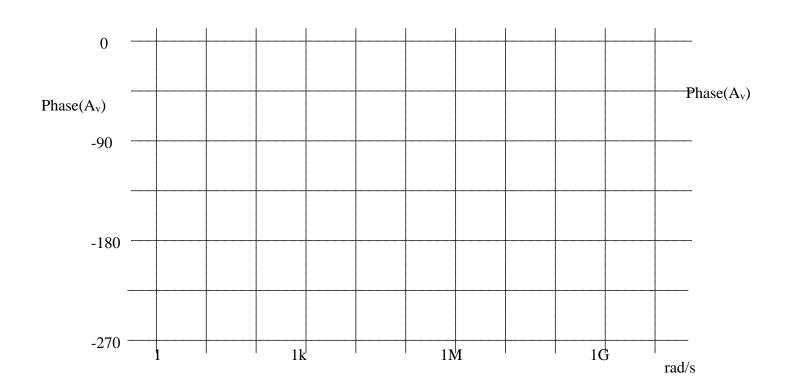
g. what is the location of the RHZ zero?

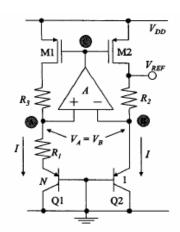

 $\omega_z =$

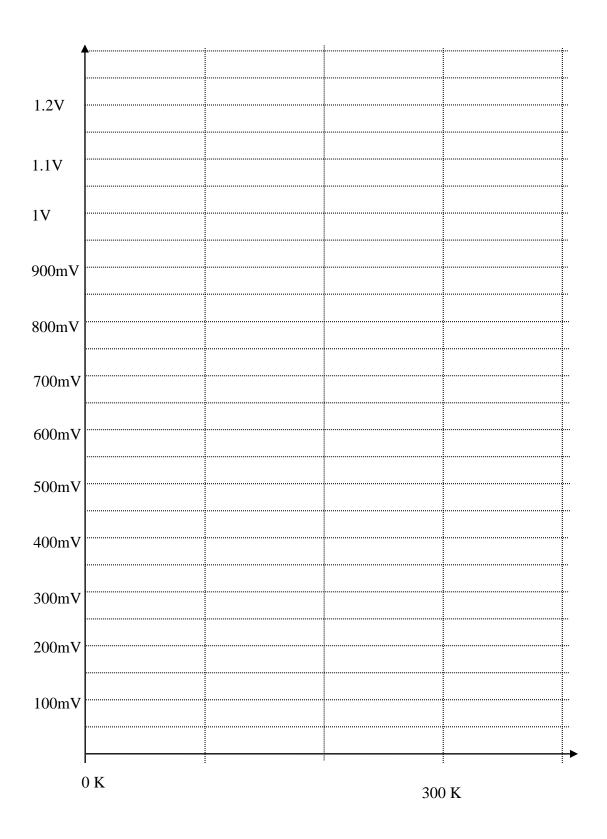
- h. plot the magnitude of the second stage gain
- i. plot the overall impedance seen at the first stage output (including R_{o1} , C_1 , C_C , and any effects of Miller multiplication),
- j. plot the magnitude of the first stage gain,
- k. plot the magnitude and phase of the overall gain. Label any poles and zeros clearly.
- 1. Estimate the phase margin for this value of C_C .


PM=

m. What is the maximum feedback factor and closed loop gain for which the amplifier has a 45 degree phase margin?

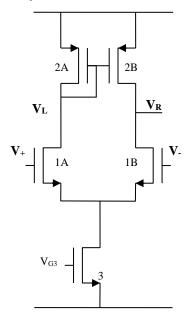

f= A_{cl}=


1kl) op amp Bode plot



Label any poles and zeros clearly!

- 2) [8] A single-pole amplifier has a gain of 1,000 and a pole at 1MHz. It is used in feedback with a feedback factor f=0.01.
- a. What is the approximate closed-loop gain,
- b. percent gain error,
- c. closed-loop pole location,
- d. and time constant of the step response?
- 3) [22] A particular diode D1 has a saturation current of 1pA, and at 1mA current at room temperature the diode voltage has a temperature coefficient of -2mV/K. You are using copies of this diode to make a bandgap reference as in Lab 4, with D2 composed of seven copies of D1. You can use the approximation that $ln(7) \sim 2$. Assuming that the current in both diodes is maintained at 1mA at room temperature
- a. What is the voltage on D1 at room temperature?
- b. What is the voltage on D2 at room temperature?
- c. What is the different between the two diode voltages at 200K, 300K, and 400K?
- d. What is the temperature coefficient of the voltage on D2?
- e. Roughly what is the right value for R1?
- f. On the following page, carefully sketch by hand the voltage on D1, the voltage on D2, and the difference between them as a function of temperature from 200K to 400K.
- g. On the same plot, if $R_3=R_2=10$ R_1 , sketch V_{ref} vs. temperature from 200K to 400K.



It will help your grade if you draw carefully and label the voltage values of any dots that you draw.

- 4) [15] For the differential amplifier in the figure below, estimate the change in V_{TAIL} , I_{TAIL} , V_L , and V_R due to
- a. An increase of ΔV in both V+ and V-
- b. An increase of ΔV in just V+
- c. An increase of ΔV in just V-

Give your answers in terms of g_{mi} , r_{oj} , and assume that $g_m * r_o >> 1$ for all i,j combinations.

	V_{TAIL}	I_{TAIL}	$V_{\rm L}$	V_R
ΔV in both V+				
and V-				
ΔV in just V+				
ΔV in just V-				