Name \qquad
SID \qquad

1. [2] The LM741 op-amp looks like a single-pole amplifier with a low frequency gain magnitude of about one million and a gain

Page	Score
1	$/ 12$
2	$/ 10$
3	$/ 23$
4	$/ 17$
Total	$/ 62$

2. [6] You have made a new NMOS transistor. You measure the drain current as a function of the gate-to-source and drain-to-source voltage, and find that it is
$\mathrm{I}_{\mathrm{d}}=\alpha\left(\mathrm{V}_{\mathrm{gs}}-1 \mathrm{~V}\right)^{3} \mathrm{~V}_{\mathrm{ds}}{ }^{2}$ when $1 \mathrm{~V}<\mathrm{V}_{\mathrm{gs}}<2 \mathrm{~V}$ and $1<\mathrm{V}_{\mathrm{ds}}<2$, where α is a positive constant with appropriate units.
a. Write an expression for the transconductance in terms of just voltages, and in terms of I_{d} and some voltages.
b. Write an expression for the output resistance in terms of I_{d}
c. Write an expression for the intrinsic gain in terms of the bias point
d. To maximize the gain, where would you bias this device (what voltages)?
3. [4] You have a diode with $\mathrm{ND}=10 \wedge 15 / \mathrm{cm} 3, \mathrm{NA}=10^{\wedge} 20 / \mathrm{cm} 3$. You calculate that the depletion width is about a micron.
a. Is the depletion region mostly in the P side or the N side?
b. Estimate the built-in potential at room temperature
c. If you increase the ND doping by a factor of 10 ,
i. how much does the built in potential change?
ii. roughly how much does the depletion width change? (e.g. increase by 10x, decrease by sqrt(10), slight increase, no change, etc.)
4. [4] You have 10 identical diodes. You apply 1 mA to one diode and measure 0.7 V across it.
a. What current do you measure if you apply 0.76 V across a single diode?
b. What voltage do you measure if you apply 1 mA to 10 diodes in series?
c. What voltage do you measure if you apply 1 mA to 10 diodes in parallel?
d. What voltage do you measure if you apply 2.7 mA to a single diode?
5. [6] The graphs below are from an AMD paper from 2002 describing preliminary results from 10nm FinFETs. You can ignore the weird threshold voltages.

 the intrinsic gain of this device?
length CMOS FinFET transistors.
b. [2] Estimate the NMOS subthreshold slope in $m V$ per decade, and the parameter " n ".
6. [14] You have an NMOS-input common source amplifier with a PMOS load and a large load capacitance. Both transistors are biased in saturation, and the quadratic model is appropriate. The magnitude of the gain is large (~ 100).
Process specs $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=1 /(10 \mathrm{~V})\left(\mathrm{L}_{\text {min }} / \mathrm{L}\right),-\mathrm{V}_{\mathrm{tp}}=\mathrm{V}_{\mathrm{tn}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{L}_{\text {min }}=1 u m, \mathrm{C}_{\mathrm{ox}}=5 \mathrm{fF} / \mathrm{um}^{2}, \mathrm{C}^{\prime}{ }_{\mathrm{ol}}=0.5 \mathrm{fF} / \mathrm{um}$.

You change the bias point so that you double Vov. How do the following change?

	I_{D}	$\mathrm{V}_{\text {ov }}$	g_{m}	R_{o}	Av	ω_{p}	ω_{u}	$\mathrm{C}_{\text {in }}$
double $\mathrm{V}_{\text {ov }}$ in quadratic		2						

At a different and higher bias point, you enter into the scattering-limited velocity saturation region of operation. If you double Vov again at this operating point, what do you expect to happen

	I_{D}	$\mathrm{V}_{\text {ov }}$	g_{m}	R_{o}	Av	ω_{p}	ω_{u}	C_{in}
Double $\mathrm{V}_{\text {ov }}$ in velocity saturation		2						

7. [9] In the same process described above, you have made a similar amplifier with $(\mathrm{W} / \mathrm{L})_{\mathrm{N}}=40 \mathrm{u} / 1 \mathrm{u},(\mathrm{W} / \mathrm{L}) \mathrm{p}=80 \mathrm{u} / 1 \mathrm{u}$. You choose $\mathrm{V}_{\mathrm{GSN}}=2 \mathrm{~V}$. Assume that the quadratic model is appropriate.
a. [3] Carefully sketch I_{DN} vs. $\mathrm{V}_{\text {out }}$. Put a dot at the transition between triode and saturation. Get the slope right in saturation.
b. [1] What PMOS gate bias voltage will result in an output voltage of 2.5 V ?

$$
\mathrm{V}_{\mathrm{GP}}=
$$

c. [3] Sketch the magnitude of the PMOS current vs. $\mathrm{V}_{\text {out }}$ with the PMOS gate biased at $V_{B P}$.
d. [2] What is the output swing?
$\left\{\mathrm{V}_{\text {out }, \min } \mathrm{V}_{\text {out, }, \text { max }}\right\}=$

Label this axis!

8. [6] Fill in the following table for a single-pole amplifier. Each row is a different amplifier.

g_{m}	R_{o}	C_{L}	$\mathrm{A}_{\mathrm{v} 0}$	ω_{p}	ω_{u}
1 m	1 M	1 uF			
		1 pF	10		$100 \mathrm{Grad} / \mathrm{s}$

9. [11] For the circuit below, assume that $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}(\mathrm{W} / \mathrm{L})_{\mathrm{p}}$ and $\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}$ for all devices, and $\mathrm{V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}=0.5 \mathrm{~V}$. You may assume that all devices are biased in saturation, and the quadratic model is appropriate. You may assume that $\mathbf{g}_{\mathbf{m}} \mathbf{r}_{\mathbf{o}} \gg \mathbf{1}$ for all combinations (so simplify).
a. In terms of $\mathrm{g}_{\mathrm{m} 1}, \mathrm{r}_{02}, \mathrm{r}_{04}$, etc., what is the impedance seen looking up from VS2 $\mathrm{R}_{\mathrm{S} 2 \mathrm{up}}=$
b. ...and looking down from VS2?
c. What is the simplified impedance seen at VS2 and Vout, assuming that all " gm_{m} " are equal and all " r_{0} "s are equal?
d. What is the appropriate DC bias on the gate of M1?
e. What is the minimum voltage for the gate of M3 such that M4 stays in saturation?

$$
\mathrm{V}_{\mathrm{BN}, \min }=
$$

f. What is the maximum voltage for the gate of M2 such that M1 stays in saturation?

$$
V_{B P, \max }=
$$

g. If the gates of M2 and M3 are biased according to your answers above, what is the output swing?

$$
\left\{\mathrm{V}_{\text {out, }, \min } \mathrm{V}_{\text {out, max }}\right\}=
$$

h. If $\mathrm{V}_{\mathrm{BP}}=\mathrm{V}_{\mathrm{BN}}=5 \mathrm{~V}$ do all devices remain in saturation? If so, what is the output swing

$$
\left\{\mathrm{V}_{\text {out }, \text { min }} \mathrm{V}_{\text {out, max }}\right\}=
$$

