EECS140 Midterm 1 Spring 2018

Name_____

SID_____

Page	Score
1	/12
2	/10
3	/23
4	/17
Total	/62

1. [2] The LM741 op-amp looks like a single-pole amplifier with a low frequency gain magnitude of about one million and a gain

magnitude of 1,000 at 1 kHz. What are the pole and unity gain frequencies?

- 2. [6] You have made a new NMOS transistor. You measure the drain current as a function of the gate-to-source and drain-to-source voltage, and find that it is $I_{d} = \alpha (V_{gs}-1V)^3 V_{ds}^2$ when $1V < V_{gs} < 2V$ and $1 < V_{ds} < 2$, where α is a positive constant with appropriate units.
 - a. Write an expression for the transconductance in terms of just voltages, and in terms of I_d and some voltages.
 - b. Write an expression for the output resistance in terms of I_d
 - c. Write an expression for the intrinsic gain in terms of the bias point
 - d. To maximize the gain, where would you bias this device (what voltages)?
- 3. [4] You have a diode with ND=10^15/cm3, NA=10^20/cm3. You calculate that the depletion width is about a micron.
 - a. Is the depletion region mostly in the P side or the N side?
 - b. Estimate the built-in potential at room temperature
 - c. If you increase the ND doping by a factor of 10,
 - i. how much does the built in potential change?
 - ii. roughly how much does the depletion width change? (e.g. increase by 10x, decrease by sqrt(10), slight increase, no change, etc.)

- 4. [4] You have 10 identical diodes. You apply 1mA to one diode and measure 0.7V across it.a. What current do you measure if you apply 0.76V across a single diode?
 - b. What voltage do you measure if you apply 1mA to 10 diodes in series?
 - c. What voltage do you measure if you apply 1mA to 10 diodes in parallel?
 - d. What voltage do you measure if you apply 2.7mA to a single diode?
- 5. [6] The graphs below are from an AMD paper from 2002 describing preliminary results from 10nm FinFETs. You can ignore the weird threshold voltages.

a. [4] Estimate Id, gm, and ro for a 1um wright NMARS kieles water and the second seco

b. [2] Estimate the NMOS subthreshold slope in mV per decade, and the parameter "n".

6. [14] You have an NMOS-input common source amplifier with a PMOS load and a large load capacitance. Both transistors are biased in saturation, and the quadratic model is appropriate. The magnitude of the gain is large (~100).

Process specs $\mu_n C_{ox}=200\mu A/V^2$, $\mu_p C_{ox}=100\mu A/V^2$, $\lambda=1/(10V)(L_{min}/L)$, $-V_{tp}=V_{tn}=1V$, $V_{DD}=5V$, $L_{min}=1um$, $C_{ox}=5fF/um^2$, $C'_{ol}=0.5$ fF/um.

You change the bias point so that you double Vov. How do the following change?

	ID	Vov	g _m	Ro	Av	ω _p	ω _u	Cin
double V _{ov} in quadratic		2						

At a different and higher bias point, you enter into the scattering-limited velocity saturation region of operation. If you double Vov again at this operating point, what do you expect to happen

	I_D	Vov	g _m	Ro	Av	ω _p	ωu	Cin
Double Vov								
in velocity		2						
saturation								

- 7. [9] In the same process described above, you have made a similar amplifier with $(W/L)_N=40u/1u$, $(W/L)_P=80u/1u$. You choose $V_{GSN}=2V$. Assume that the quadratic model is appropriate.
 - a. [3] Carefully sketch I_{DN} vs. V_{out} . Put a dot at the transition between triode and saturation. Get the slope right in saturation.
 - b. [1] What PMOS gate bias voltage will result in an output voltage of 2.5V?

 $V_{GP} =$

- c. [3] Sketch the magnitude of the PMOS current vs. V_{out} with the PMOS gate biased at V_{BP}.
- d. [2] What is the output swing?

 $\{V_{out,min}V_{out,max}\}=$

8.	[6] Fill in the	following table for	or a single-pole am	plifier. Each row	v is a different ar	nplifier.
		0		1		

gm	Ro	CL	A_{v0}	ω _p	ωu
1m	1 M	1uF			
		1pF	10		100Grad/s

- 9. [11] For the circuit below, assume that $\mu_n C_{ox}(W/L)_n = \mu_p C_{ox}(W/L)_p$ and $\lambda_n = \lambda_p$ for all devices, and $V_{tn} = -V_{tp} = 0.5V$. You may assume that all devices are biased in saturation, and the quadratic model is appropriate. You may assume that $g_m r_0 >> 1$ for all combinations (so simplify).
 - a. In terms of g_{m1} , r_{o2} , r_{o4} , etc., what is the impedance seen looking up from VS2 R_{S2up} =
 - b. ...and looking down from VS2?
 - c. What is the simplified impedance seen at VS2 and Vout, assuming that all "g_m"s are equal and all "r_o"s are equal?
 - d. What is the appropriate DC bias on the gate of M1?

 $V_{BN,min} =$

- e. What is the minimum voltage for the gate of M3 such that M4 stays in saturation?
 - What is the maximum voltage for the gate of M2 such that M1 stays in saturation? $V_{BP,max}$ =
- g. If the gates of M2 and M3 are biased according to your answers above, what is the output swing? {Vout,minVout,max}=
- h. If $V_{BP}=V_{BN}=5V$ do all devices remain in saturation? If so, what is the output swing $\{V_{out,min}V_{out,max}\}=$

f.

 $R_{S2} =$

R_{out}=

 $R_{S2down} =$