EECS140 Midterm 2 Spring 2008

Name_____

SID_____

1) For questions 1A and B, give your answers in terms of the various g_m , C_{gs} , V_{dsat} , V_{TH} , (e.g. g_{m1} , C_{gs5}), and C_C , C_2 Unless otherwise indicated, you may make the following assumptions:

Prob.	Score
1ABCDIJ	/20
1EFGH	/30
2	/15
3	/15
4	/20
Total	

- All transistors are biased in saturation
- All capacitors are assumed to be zero except $C_C,\,C_2$, and C_{gs} for all transistors.
- $g_m r_o >> 1$ for all combinations of g_m and r_o

1A) What is the minimum supply voltage that can be used which will keep all devices in saturation?

1B) Due to a layout error, one version of this amplifier has $(W/L)_{2B}= 5 (W/L)_{2A}$. Derive the mirror pole frequency, and the corresponding mirror/diff-pair zero frequency.

1A) V _{DD,min}	
1B) ω_{PM} , ω_Z with layout error	

Prob. 1, cont.) Assume that the layout error in 1B is fixed, and the mirror doublet is at high frequency and can be ignored. Using the following values for parameters, answer the following questions

g _{m1,2}	r _{01,2}	g_{m4}	r _{04,5}	C_2	C _C	C _{gs4}
0.1mS	2M	10mS	200k	100p	1p	10p

1C) Why is R_Z in the circuit, and what value should it have?

1D) What are the uncompensated poles ($C_C=0$) ?

On the following pages,

1E) plot the magnitude of the second stage gain

1F) plot the overall impedance seen at the first stage output (including R_{o1} , C_{gs4} , C_C , and any effects of Miller multiplication),

1G) plot the magnitude of the first stage gain,

1H) plot the magnitude and phase of the overall gain. Label any poles and zeros clearly.

1I) Estimate the phase margin for this value of C_C.

1J) Approximately what value of C_C is needed for a 45 degree phase margin?

1C) R_Z purpose and value	
1D) $\omega_{p1,0}, \omega_{p2,0}$	
1I) Phase	
margin, C _C =1p	
1J) C _C	
for 45 degree phase	
margin	

1H) op amp Bode plot

Label any poles and zeros clearly!

2) For the following questions, give a short answer and justification (2 sentences max).2A) For lab1, how did the input common mode value affect the current in the first stage?(a lot, a little, not at all)

2B) For lab1, how did the input common mode value affect the gain of the first stage? (a lot, a little, not at all)

2C) For lab1, does that circuit work with resistive feedback? Why or why not?

3) for your Miller-compensated 2-stage amplifier in problem 1 with a phase margin of 45 degrees, what is the impact on the compensated pole locations of doubling C_1 ? Doubling C_2 ? Doubling C_c ? (answers might be double, half, minimal effect, ...)

	ω_{p1}	ω_{p2}
Double C ₁		
Double C ₂		
Double C _c		

4) For the four differential amplifiers below, assume that $1/g_m << R << r_o$ for all configurations, and that current sources are ideal. Calculate the common mode and differential gain for each amplifier.

	A _{VCM}	A _{VDM}
Amp A		
Amp B		
Amp C		
Amp D		