Regions of Operation

$$
V_{d s} / L=1 V / u m
$$

V_{d}
$\mathrm{I}_{\mathrm{d}}=\left(\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\right)(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{ds}} / 2\right) \mathrm{V}_{\mathrm{ds}}\left(1+\lambda \mathrm{V}_{\mathrm{ds}}\right) \quad$ triode $I_{d}=\left(\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} / 2\right)(\mathrm{W} / L)\left(\mathrm{V}_{\mathrm{gs}}-V_{t}\right)^{2}\left(1+\lambda V_{d s}\right) \quad$ saturation
$\mathrm{I}_{\mathrm{d}}=\left(\mathrm{C}_{\mathrm{ox}} \mathrm{W} / 2\right)\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}\right) \mu_{\mathrm{scl}}\left(1+\lambda \mathrm{V}_{\mathrm{ds}}\right) \quad$ scattering limited
$\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{s}} \mathrm{e}^{\left(\mathrm{Vgs}-\mathrm{Vt}_{\mathrm{t}} /\left(\mathrm{nv}_{\mathrm{T}}\right)\left(1+\mathrm{V}_{\mathrm{ds}} / \mathrm{V}_{\mathrm{A}}\right) \quad \text { sub-threshold }\right.}$
None of these regions has a hard boundary, and the current varies smoothly from region to region.
Note the symmetry between the NMOS and PMOS devices.

