EE143: Microfabrication Technology

2

- Fairly simple process: only 5 masks; note that this is much smaller than today's proess, which might have more than 28 masking steps
- The rise of MOS occurred in steps:
- <u>1965</u>: PMOS w/ Al gate
 - \rightarrow Used <111> wafers because bipolar used them
 - → This forced the use of PMOS, since oxide charge was dense in <111>-Si to oxide interfaces
 - \rightarrow Oxide charge made it difficult to isolate NMOS devices

- <u>1967-70</u>: Al gate NMOS
 - → Use of <100>-Si together with sintering reduced oxide charges
 - $\rightarrow\,$ Speed faster than PMOS and path to matching bipolar speed could be seen

- To reduce power consumption, a complementary device was needed
- This is where CMOS looked advantageous

CHOS Inverter Jone device alway off in Each of the two states S very little static power Consymptic PMOS NMOS NMOS

- <u>1963</u>: pwell CMOS
 - → CMOS gate actually came before NMOS or PMOS, but poor control of oxide quality at the time prevented it from thriving
 - \rightarrow Why didn't CMOS thrive in 1963?
 - 1. Higher fabrication cost.
 - 2. Latch-up problems.
 - 3. Lower packing density due to need for wells.
 - 4. CMOS slower than NMOS due to larger gate capacitance.
- But soon power became an issue:
- <u>1971</u>: Intel 4004 4-bit microprocessor \rightarrow 2,300 devices (PMOS)
- 1978: Intel 8086 16-bit microprocessor
 - \rightarrow 29,000 devices (NMOS); power dissipation beginning to get up there: 1.5W @ 8MHz
- <u>1985</u>: Intel 80386
 - \rightarrow 275,000 devices \rightarrow NMOS light bulb!
 - \rightarrow A low power technology was needed
- <u>Result</u>: CMOS takes over
 - \rightarrow Intel 80C86 (CMOS version of 80386)
 - \rightarrow Intel 80486: 1.2 million Xsistors
 - \rightarrow Intel Pentium (P5): 3 million Xsistors
 - \rightarrow Intel P6: 5.5 million Xsistors in core, 15 million more in secondary cache
 - \rightarrow And of course it keeps going to today ...
 - \rightarrow Intel Core 2 Duo: 820 million Xsistors
 - \rightarrow Intel Core i7: 1.4 billion Xsistors (in 2012)
- All of this is a result of scaling via micro (and now nano) technology

Much of today's progress is driven by a roadmap generated many years ago

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ²)	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

- The next jump in technological capability came with the advent of MEMS, which then led to nanotechnology
- 300 kHz Folded-Beam Micromechanical Resonator:

Remover

but not the

polysplicia

structure!

Free-

Standing

Polysilicon

Bgam

- This course will focus mainly on transistor fabrication, but many of the concepts learned will be applicable to MEMS, as well
- Your lab layout introduces for the first time a MEMS structure that has a better chance of working than previous renditions of this class

Prof. Kris Pister's pop-up MEMS:

Silicon Substrate

Hydrofluoric

Acid

Release

Etchant

- Show video: Ming Wu
- Show video: fully integrated micromechanical resonator oscillator
- Fully integrated micromechanical resonator oscillator: