EE 143: IC History \& Review of Devices 9/2/14 Tu

- Reading: Jaeger, Chit. 1
- Lecture Topics:
- History of IC's
- Devices of Interest
\rightarrow MOS transistor
\rightarrow Micromechanical structure
- History of IC's:
- 1834: Difference Engines (mechanical computers)
\rightarrow Gears, cranks, levers, decimal, pipelining!
- 1904: Vacuum tube invented
\rightarrow Yielded the ENIAC vacuum tube computer
- 1925: J. Lilenfield proposed the MOSFET

transistor

\rightarrow Problem: knowledge of materials not sufficient to get this to work

- (instead)
- 1947: Invention of the transistor (Bardeen, Brattain, Shockley)
- 1949: Invention of the Bipolar Xsistor (Shockley)
- 1956: First digital logic gates (Harris)
- 1959: Invention of planar silicon processing (Kilby, Noyce)
- Then a slew of bipolar technologies

\rightarrow TTL (1965)
\rightarrow ECL (1967)
\rightarrow MTL/IL (1972)
\rightarrow SiGe heterostructures (1990's)
- Bipolar ruled during the 60's and 70's, because it was faster than anything else, incl. MOS
- But soon, its excessive power consumption caught up, and MOS began to come into favor as small channel lengths boosted the speed of MOS
Physical Structure \{ Device Symbols
(cross-section view of NMOS device)

nos Transista Mathematical Model

(1) Cut-offlegion: $\left(V_{g s} \leq V_{t}\right)$
$I_{g}: I_{b}=0 ; I_{d}=0$
(2) Linear (or Trios) Region: $\left(V_{g s}-V_{t n} \geqslant V_{d s} \geq 0\right)$
$I_{g}: I_{b}: 0 ; I_{d}: \mu_{n} C_{a} \frac{w}{L}\left(V_{g s}-V_{t-} \cdot \frac{V_{d s}}{2}\right) V_{d s}$
$=k_{n}\left(v_{g s}-v_{t n}-\frac{V_{d s}}{2}\right)_{d s}$
(3) Saturation Region: $\left(V_{d s} \geqslant V_{g s}-V_{t n} \geqslant 0\right)$

$$
\begin{aligned}
I_{g}=I_{b}=0 ; I_{d} & =\frac{1}{2} \mu_{n} C_{x} \frac{w}{L}\left(v_{g s}-V_{t n}\right)^{2}\left(1+\lambda v_{d s}\right) \\
& =\frac{1}{2} k_{n}\left(V_{g s}-V_{t a}\right)^{2}\left(1+\lambda V_{d c}\right)
\end{aligned}
$$

where:
$\mu_{n} \triangleq e$-mobility in the channd
$C_{c x} \triangleq$ gale oxide capacitance pa unit area

$$
\begin{align*}
& k_{n}=k_{n}^{\prime} \frac{W}{L}=\mu_{n} C_{4} \frac{M}{L} \\
& I_{g}: I_{b}=0 \text { fa all regions (at lent fa dc) } \tag{2}
\end{align*}
$$

- Fairly simple process: only 5 masks; note that this is much smaller than today's proess, which might have more than 28 masking steps
- The rise of MOS occurred in steps:
- 1965: PMOS w/ Al gate
\rightarrow Used <111> wafers because bipolar used them
\rightarrow This forced the use of PMOS, since oxide charge was dense in <111>-Si to oxide interfaces
\rightarrow Oxide charge made it difficult to isolate NMOS devices

- 1967-70: Al gate NMOS
\rightarrow Use of <100>-Si together with sintering reduced oxide charges
\rightarrow Speed faster than PMOS and path to matching bipolar speed could be seen
- 1970: Si-gate NMOS
\rightarrow Advantage: self-alignment of source \& drain
\rightarrow Problem: power consumption (similar to bipolar)

- To reduce power consumption, a complementary device was needed
- This is where CMOS looked advantageous

Need minimum spacings
betwean junction ! wede
Fig. 2.1
edge \rightarrow this compremises tho minimum size

- 1963: pwell CMOS
\rightarrow CMOS gate actually came before NMOS or PMOS, but poor control of oxide quality at the time prevented it from thriving
\rightarrow Why didn't CMOS thrive in 1963?

1. Higher fabrication cost.
2. Latch-up problems.
3. Lower packing density due to need for wells.
4. CMOS slower than NMOS due to larger gate capacitance.

- But soon power became an issue:
- 1971: Intel 4004 4-bit microprocessor
\rightarrow 2,300 devices (PMOS)
- 1978: Intel 8086 16-bit microprocessor
\rightarrow 29,000 devices (NMOS); power dissipation beginning to get up there: 1.5 W @ 8 MHz
- 1985: Intel 80386
\rightarrow 275,000 devices \rightarrow NMOS light bulb!
\rightarrow A low power technology was needed
- Result: CMOS takes over
\rightarrow Intel 80C86 (CMOS version of 80386)
\rightarrow Intel 80486: 1.2 million Xsistors
\rightarrow Intel Pentium (P5): 3 million Xsistors
\rightarrow Intel P6: 5.5 million Xsistors in core, 15 million more in secondary cache
\rightarrow And of course it keeps going to today ...
\rightarrow Intel Core 2 Duo: 820 million Xsistors
\rightarrow Intel Core i7: 1.4 billion Xsistors (in 2012)
- All of this is a result of scaling via micro (and now nano) technology

Much of today's progress is driven by a roadmap generated many years ago

Year	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 4}$
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm	6.2 M	18 M	39 M	84 M	180 M	390 M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
\#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size $\left(\mathrm{mm}^{2}\right)$	340	430	520	620	750	900
Wiring levels	$6-7$	7	$7-8$	$8-9$	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

- The next jump in technological capability came with the advent of MEMS, which then led to nanotechnology
- 300 kHz Folded-Beam Micromechanical Resonator:

- Process cross-section \& flow for the above device

- Prof. Kris Pister's pop-up MEMS:

- Show video: Ming Wu
- Show video: fully integrated micromechanical resonator oscillator
- Fully integrated micromechanical resonator oscillator:

- Process cross-section for the above device
- Full planar integration with transistors on a singlechip
- Allows smaller size, better performance, and lower cost in many situations

- This course will focus mainly on transistor fabrication, but many of the concepts learned will be applicable to MEMS, as well
- Your lab layout introduces for the first time a MEMS structure that has a better chance of working than previous renditions of this class

