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* Reading: portions throughout Jaeger
= Lecture Topics:

— Silicon

— Silicon Dioxide

— Silicon Nitride

— Aluminum & Other Metals

= In this course, the focus will be on silicon
microfabrication, but the methods used are also
relevant to other material systems, e.g., gallium
arsenide, InP, etc.

= Materials in Silicon-Based Microfabrication:

= Four basic materials
(a) Silicon (single crystal; polycrystalline)
(b) Silicon Dioxide
(c) Silicon Nitride
(d) Aluminum & Other Metals

* Materials for advanced processes
— Tungsten, silicides, polyimide

* Need to consider three main items for each material
— Electrical characteristics
— Chemical characteristics (i.e., stability)
— Usage in IC's

(a) Silicon: (Si)
(i) Single Crystal Silicon (Si)
= Electrical: semiconductor
— Can change its conductivity by introducing
impurities, called dopants
= Semiconductors are not intrinsically conductive
* To make them conductive, replace silicon atoms in
the lattice with dopant atoms that have valence
bands with fewer or more e™'s than the 4 of Si
= If more e's, then the dopant is a donor: P, As
— The extra e is effectively released from the
bonded atoms to join a cloud of free e's, free to
move like e”'s in a metal
Extra free e-
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— The larger the # of donor atoms, the larger the #
of free e”'s — the higher the conductivity
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= Here, energy (e.g., heat that raises temperature)
can give an e” in the valence band sufficient energy
to get to the conduction band

= This puts an e” in the conduction band and a h* in
the valence band, both of which can conduct

= Doping basically adds an atom with one e” that is only
loosely held to the atom; so very little energy (e.g.,
from an electric field) is needed to strip it from the
atom and let it wander the conduction band
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= If it has fewer e's than silicon, then the dopant is
an acceptor: B

1Si: S S - B. : Si
:Si: S Sic Dope : Sic:

hole

— Lack of an e” = hole = h*

— When e”'s move into h*'s, the h*'s effectively move
in the opposite direction - a h* is a mobile (+)
charge carrier

= Conductivity Equation:

charge magnitude
on an electron

_~O0=Qu,n+qu,p
\
conductivity 7 '\ hole
electron  electron hole density
mobility density mobility

= Nomenclature:
- n- = lightly doped (1014 to 1017)
— n = moderately doped (1017 to 1019)

heavily doped (>1019)

= Chemical: rather inert, but ..

= can be etched in KOH, HNO3/HF

= Latter reaction forms oxide first, then etches the
oxide with HF

= Usage in IC's: active devices (obviously), but also
local interconnect, resistors

—n+ =
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» Silicon Wafer: single-crystal silicon
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= Silicon crystallography:
— Silicon has a basic diamond structure: two merged
face-centered cubic (FCC) crystal structures
— In FCC, atoms are assumed to touch along face
diagonals:

C. Nguyen
= Plane nomenclature: Miller indices
f (100) plane
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Miller Indices (h k I): A
* Planes y
% Reciprocal of plane intercepts with axes —
% e.g., for (110), intercepts: (x.,y,z) = \ )\\

(1,1,=°); reciprocals: (1,1,0) —» (110)
% (unique), {family}
* Directions
% One endpoint of vector @ origin
% [unique], <family>

J
* The angle between vectors [abc] and [xyz] is given by:

ax+by+cz= |(a,b,c} . |(x,y,z} -cos @

{111}

P — cos! ax+by+cz
ebeMerz) (@,b,c)-|(x, y,z)
* For {100} and {110} — 45°
* For {100} and {111} — 54.74°
* For {110} and {111} — 35.26°, 90°, and 144.74°

= Planes on a silicon wafer:

{100} type wafer

— Very pure: 1 in 10 impurity level
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— Very low defect density: 1-3/cm?

— Different sizes over the years:

: 2" (50mm)

: 3" (75mm)

1 4" (100mm)

: 5” (125mm)

1 6” (150mm)

: 8" (200mm)

1 12" (300mm)

2012: 17" (450mm)

* Why go to larger wafers?
1. Quality goes up (will explain later)
2. Yield gets better (reduces cost/chip)
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= Of course, the cleanliness of the clean room also
greatly influences the yield
— Class 100: no more than 100 particles larger than
0.5 um in one cubic meter
* In addition, you can get more chips on a larger
wafer, since you waste less space along the edges
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* Doping concentration/resistivity
— Type: either p or n
— Concentration: 10'3 - 10%° cm3
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* Flatness:

— Very important for lithography, where focusing is
needed

— For 8" wafer, flatness must be better than
+200nm

— Polishing technology critical for wafer production

* Wafer production:

» Generally use the Czochralski method, invented by
Jan Czochralski in 1916 while investigating the
crystallization rates of metals

* Finished crystal can be up to 2 meters long

* Must control temperature and velocity fields during
crystal growth to minimize defects
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(ii) Polycrystalline silicon (polySi)
* Basically, grains of silicon
= Electrical: < grain I ’”}
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» Result: conducts when doped, like single crystal
silicon, but now has grain boundaries that impede



EE143: Microfabrication Technology |

| Microfabrication Materials |

C. Nguyen

conduction at low to moderate doping levels (and
increase conduction at extremely high degenerate
doping levels)

= Chemical: same as single crystal silicon

= Usage in IC's: gate material in MOSFET's, local
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— Also used quite heavily in MEMS as a structural
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» Deposition:

— Most common technique: chemical vapor deposition
(cvD)
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* Grain size > strong function of temperature

— Depends on the ability of adatoms to run around
and find the lowest energy state locations > leads
to large grain size

— At 610°C, grain size is 200nm or so

— At 585°C, the Si comes down amorphous, but then
can be crystallized into very fine grains by
annealing

* Doping concentration/resistivity:

Rerstivity [o.cm)
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= This almost binary resistance dependence on doping is
fairly unique to polysilicon ... and quite useful ... why
does it happen?
— If you apply an E-field, then
— If low doping, e's can't get b the grain
boundaries; they get trapped in the traps
— If high doping, e™'s can now get by the grain
boundaries

(b) Silicon Dioxide (SiO2):
= Amorphous structure (this is NOT quartz)

= Electrical: insulator %da!{#\? a"/‘MU Mﬂw/h"g
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= Resistivity: 10!* - 1018 Q-cm
— Compare to Al's 107° Q-cm
= Chemical: fairly inert, but etches in HF
* Usage in IC's: gate dielectric in MOSFET, sacrificial
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= Can be deposited or grown thermally

(c) Silicon Nitride (Si3N4)
= Electrical: insulator
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Chemical: fairly inert, but etches in hot phosphoric
acid

Usage in IC's: insulator, as in metal-to-metal
insulation in MOSFET's and interconnect insulation in
MEMS

Usually deposited via chemical vapor deposition (CVD)
— Reactants: SiHs + NH3

(d) Aluminum: (Al)

Electrical: conductor; 20x107° Q-cm

Chemical: active; can be etched in many acids
Usage in IC's: interconnect; gate material (metal
gate technology before 1974, and after 2007)
Deposited via thermal evaporation, e-beam
evaporation, or sputtering

— Melting point: ~550°C

Structure:

— In IC's, the polycrystalline form is normally seen,

Why is Al preferred among many other metals?

— What do we want in a metal?
— Tt must conduct.
— It must stick to SiO.

— Al does both of these

— Au, Ag, and other metals can be used, but they
require a layer between them and the SiO: to help
them stick (need an adhesion layer)
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