

Oxidation Modeling (cont.)

UCBerkeley Find an expression for $X_{OY}(t)$:

Rate of change of oxide $= \frac{dX_{OX}}{dt} = \frac{J}{M} = \frac{DN_O/M}{X_{OY} + D/k_*}$ (3)

of molecules of oxidizing species incorporated into a unit volume of oxide $= 2.2 \times 10^{22} cm^{-3} \text{ for } O_2$ $= 4.4 \times 10^{22} cm^{-3} \text{ for } H_2O$

Solve (3) for $X_{OX}(t)$: [Initial condition $X_{OX}(t=0)=X_i$]

$$\frac{dX_{OX}}{dt} = \frac{DN_{O}/M}{X_{OX} + D/k_{s}} \quad \text{F} \int_{X_{i}}^{X_{OX}} (X_{OX} + \frac{D}{k_{s}}) dX_{OX} = \int_{0}^{t} \frac{DN_{O}}{M} dt$$

oxidizing flux

Oxide Thickness Versus Time

UC Berkeley Result:

additional time required

 \nearrow time required to grow X_i

to go from $X_i \to X_{OX}$ [X_i = initial oxide thickness] $X_{OX}(t) = \frac{A}{2} \left\{ \left[1 + \frac{4B}{A^2}(t+\tau) \right]^{\frac{1}{2}} - 1 \right\}$

where $A = \frac{2D}{k_s}$ $\tau = \frac{X_i^2}{B} + \frac{X_i}{\left(B/A\right)}$

 $B = \frac{2DN_O}{M} \qquad D = D_O \exp\left(-\frac{E_A}{kT}\right)$

i.e., D governed by an Arrhenius relationship → temperature dependent

Oxidation Modeling (cont.)

UC Berkeley

For shorter times:

$$\left[(t+\tau) << \frac{A^2}{4B} \right] \Rightarrow X_{OX}(t) = \left(\frac{B}{A} \right) (t+\tau) \Rightarrow \text{ oxide growth limited by reaction at the Si-SiO}_2$$
 interface

Taylor expansion (first term after 1's cancel)

 $^{
u}$ linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

$$\left[\left(t + \tau \right) >> \frac{A^2}{4B} \right] \Rightarrow X_{OX}(t) = \sqrt{B(t + \tau)} \approx \sqrt{Bt}$$

$$t >> \tau \qquad \text{Parabolic}$$
rate constant

E 143: Microfabrication Technology

LecM 2

C. Nguyen

2/14/10

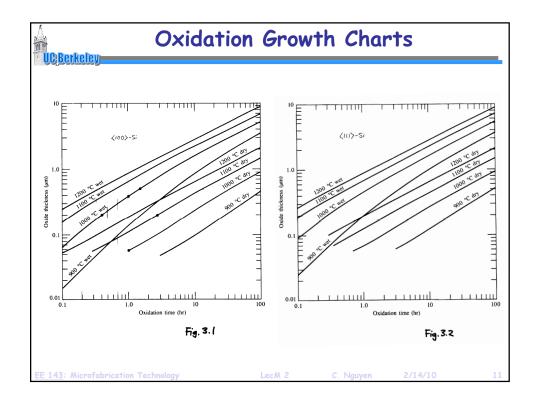
Oxidation Rate Constants UCBERRELEY Table 6-2 Rate constants describing (111) silicon oxidation kinetics at 1 Atm total

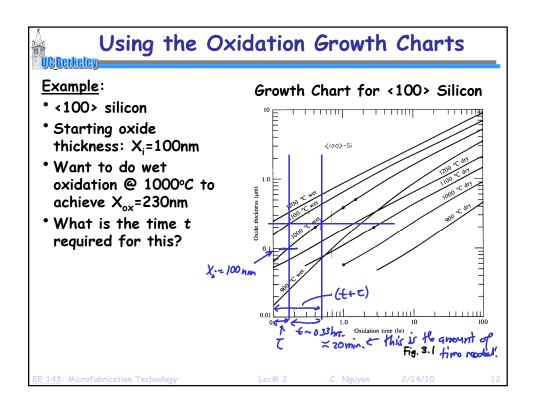
pressure. For the corresponding values for (100) silicon, all C₂ values should be divided by 1.68.

Ambient B B/A

Ambient		B/A
Dry O ₂	$C_1 = 7.72 \times 10^2 \mathrm{\mu m^2 hr^{-1}}$	$C_2 = 6.23 \times 10^6 \mu \text{m hr}^{-1}$
	$E_1 = 1.23 \text{ eV}$	$E_2 = 2.0 \mathrm{eV}$
Wet O ₂	$C_1 = 2.14 \times 10^2 \mathrm{\mu m^2 hr^{-1}}$	$C_2 = 8.95 \times 10^7 \mathrm{\mu m}\mathrm{hr}^{-1}$
	$E_1 = 0.71 \text{ eV}$	$E_2 = 2.05 \text{ eV}$
H ₂ O	$C_1 = 3.86 \times 10^2 \mu \text{m}^2 \text{hr}^{-1}$	$C_2 = 1.63 \times 10^8 \mathrm{\mu m}\mathrm{hr}^{-1}$
	$E_1 = 0.78 \mathrm{eV}$	$E_2 = 2.05 \mathrm{eV}$

 Above theory is great ... but usually, the equations are not used in practice, since measured data is available
 Rather, oxidation growth charts are used


EE 143: Microfabrication Technology


LecM 2

C. Nguyen

/14/10

10

Factors Affecting Oxidation

UC Berkeley

- In summary, oxide thickness is dependent upon:
 - 1. Time of oxidation
 - 2. Temperature of oxidation
 - 3. Partial pressure of oxidizing species ($\propto N_o$)
- Also dependent on:
 - 4. Reactant type:

Dry O2

Water vapor ⇒ faster oxidation, since water has a higher solubility (i.e., D) in SiO₂ than O₂

- 5. Crystal orientation:
 - <111> faster, because there are more bonds available at the Si-surface
 - <100> ← fewer interface traps; smaller # of unsatisfied Si-bonds at the Si-SiO₂ interface

E 143: Microfabrication Technology

LecM 2

C. Nguye

2/14/1

13

Factors Affecting Oxidation

UC Berkeley

- 6. Impurity doping:
 - P: increases linear rate const.
 - no affect on parabolic rate constant
 - faster initial growth \rightarrow surface reaction rate limited
 - B: no effect on linear rate const.
 - increases parabolic rate const.
 - faster growth over an initial oxide \rightarrow diffusion faster

E 143: Microfabrication Technology

LecM 2

C. Nguyen

2/14/10

14

Dopant Redistribution During Oxidation

- This must be considered and designed for when generating any process flow, especially for transistor circuits, e.g., CMOS
- During oxidation, the impurity concentration at the $Si-SiO_2$. interface can increase (pile-up) or deplete, depending upon the dopant type
- Whether a particular impurity depletes or piles up @ the interface depends on:
 - 1. Diffusion coefficient, D (of the impurity in SiO_2)
 - 2. Segregation coefficient, m:

$$m = \frac{\text{impurity equil. conc. in Si}}{\text{impurity equil. conc. in SiO}_2}$$

E 143: Microfabrication Technology

LecM 2

C. Nguyei

2/14/10

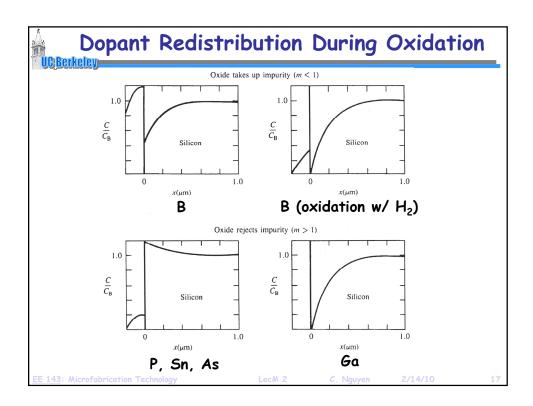
15

Dopant Behavior During Oxidation

 Segregation coefficient (m) and diffusion constant (D) combine to determine dopant behavior during oxidation:

	Impurity	m	D in SiO ₂	Dopant Behavior During Oxidation
	В	<0.3 (small)	Small	depl. f/Si surface, pile up in oxide
	B (oxidation w/H ₂)	<0.3 (small)	Large	depl. f/Si surface, depl. from oxide
	P, Sn, As	~10 (large)	Small	pile up in Si, very little diff. into SiO ₂
	Ga	20 (large)	Large	depl. f/Si, depl. from oxide

e.g., wet oxidation where H_2 is present as a by-product.


So large that it depletes the dopant @ the Si surface despite,

EE 143: Microfabrication Technology

LecM 2

iyen 2

2/14/10

