

General Comments on Predeposition

UC Berkeley • Higher doses only: $Q = 10^{13} - 10^{16} \text{ cm}^{-2}$ (I/I is $10^{11} - 10^{16}$)

- Dose not well controlled: ± 20% (I/I can get ± 1%)
- Uniformity is not good
 - ♦ ± 10% w/ gas source
- Max. conc. possible limited by solid solubility \$Limited to ~1020 cm-3
 - $\$ No limit for I/I ightarrow you force it in here!
- For these reasons, I/I is usually the preferred method for introduction of dopants in transistor devices
- But I/I is not necessarily the best choice for MEMS
 - \$I/I cannot dope the underside of a suspended beam
 - \P I/I yields one-sided doping o introduces unbalanced stress \rightarrow warping of structures
 - \P I/I can do physical damage o problem if annealing is not permitted
- Thus, predeposition is often preferred when doping MEMS

Diffusion Modeling **UC** Berkeley Modeling (N(x) ⇒ Dopants from points of high conc. more to points of low conc. Wi flux J ⇒ Question: What's N(x,t)? 7 fen of time Fick's law of Diffusion- (1st law) flux [#/cm2.5] Diffusion Coefficient Continuity Equation for Particle Flux-General Form: negative of the divergence rate of increase of particle flux of conc. WI time

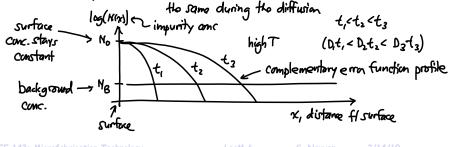
Diffusion Modeling (cont.)

We've interested for now in the one-dimensional form:

 $\frac{\partial N(x,t)}{\partial t} = -\frac{\partial J}{\partial x}$ $\left[\frac{\partial}{\partial x}(I) \text{ and substitute (2) in (1)}\right] \Rightarrow \frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2} \quad \left[\text{Diffusion in I-D}\right]$

Solutions: -> dependent upon boundary conditions -> use variable separation or laplace Xform techniques

Case 1: Predeposition -> constant source diffusion: surfue concentration stays

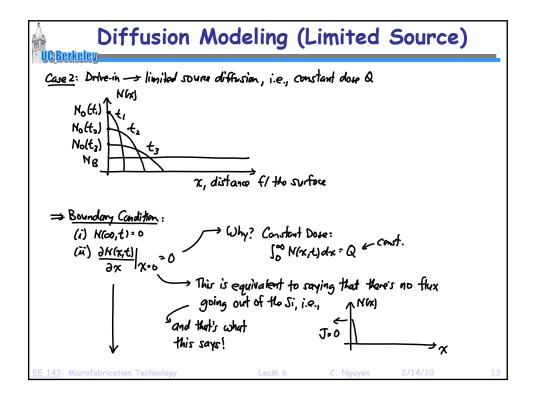


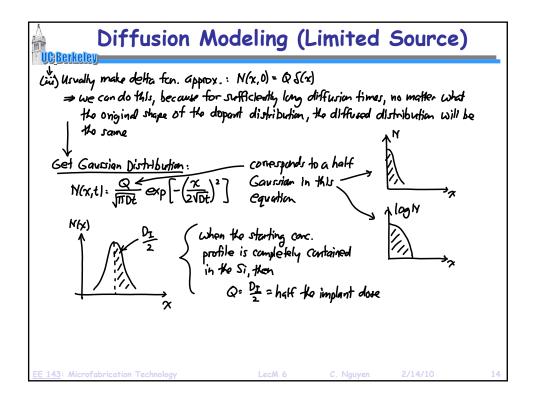
Diffusion Modeling (Predeposition)

Diffusion Modeling (Predeposition)

Diffusion Modeling (Predeposition) \Rightarrow if plothod on a linear scale, would look like this:

A) $N(0,t) = N_0$ $(a) N(0,t) = N_0$ $(b) N(0,t) = N_0$ $(b) N(0,t) = N_0$ $(c) N(0,t) = N_0$





Two-Step Diffusion

UC Berkeley

- Two step diffusion procedure:
 - ♦ <u>Step 1</u>: predeposition (i.e., constant source diffusion)
 - ♥ Step 2: drive-in diffusion (i.e., limited source diffusion)
- For processes where there is both a predeposition and a drive-in diffusion, the final profile type (i.e., complementary error function or Gaussian) is determined by which has the much greater Dt product:
 - (Dt)_{predep} » (Dt)_{drive-in} ⇒ impurity profile is complementary error function
 - $(Dt)_{drive-in} \gg (Dt)_{predep} \Rightarrow impurity profile is Gaussian (which is usually the case)$

E 143: Microfabrication Technology

LecM 6

C. Nguyen

2/14/10

15

Successive Diffusions

- For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile
- Typical overall process:
 - 1. Selective doping

 - Drive-in/activation \rightarrow D₂t₂
 - 2. Other high temperature steps
 - (eg., oxidation, reflow, deposition) → D₃t₃, D₄t₄, ...
 - ◆ Each has their own Dt product
 - 3. Then, to find the final profile, use

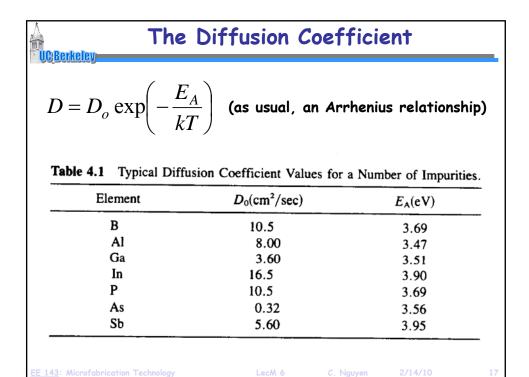
$$(Dt)_{tot} = \sum_{i} D_{i}t_{i}$$

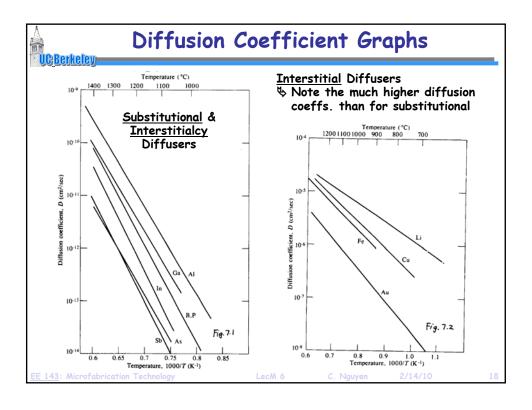
in the Gaussian distribution expression.

E 143: Microfabrication Technology

LecM 6

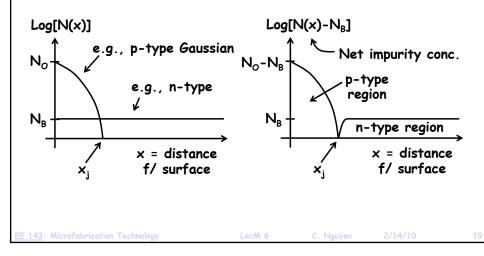
C. Nguyen





Metallurgical Junction Depth, x_{j}

 $\mathbf{x_j}$ = point at which diffused impurity profile intersects the background concentration, N_{B}



Expressions for x_j

Assuming a Gaussian dopant profile: (the most common case)

$$N(x_j, t) = N_o \exp\left[-\left(\frac{x_j}{2\sqrt{Dt}}\right)^2\right] = N_B \rightarrow x_j = 2\sqrt{Dt \ln\left(\frac{N_o}{N_B}\right)}$$

• For a complementary error function profile:

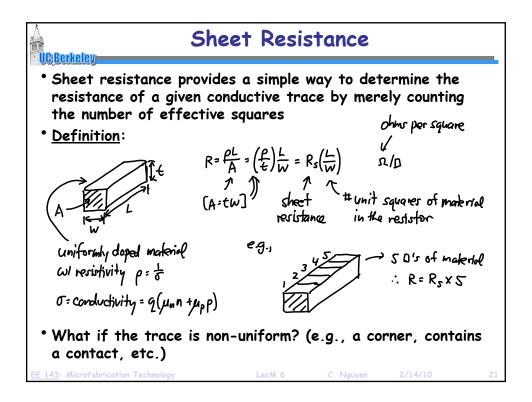
$$N(x_j, t) = N_o \operatorname{erfc}\left(\frac{x_j}{2\sqrt{Dt}}\right) = N_B \rightarrow x_j = 2\sqrt{Dt} \operatorname{erfc}^{-1}\left(\frac{N_B}{N_o}\right)$$

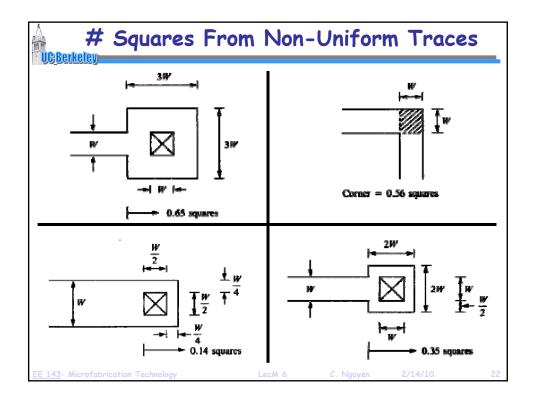
EE 143: Microfabrication Technology

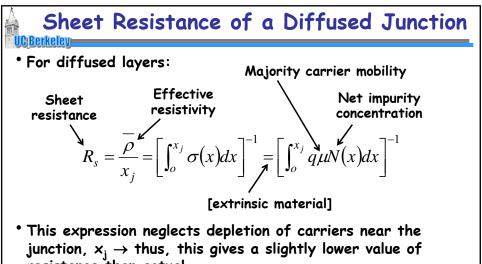
LecM 6

C. Nguyen

2/14/10







- resistance than actual
- Above expression was evaluated by Irvin and is plotted in "Irvin's curves" on next few slides
 - concentration), and N_B (the substrate background conc.)

