EE143 – Fall 2016 Microfabrication Technologies

Lecture 14: MEMS Process

Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH)

- MOSFET: metal-oxide-semiconductor field effect transistor
- Typically
 - Channel length: L ~ 10 nm to 0.35 μ m,
 - Channel width: W ~ 0.05 μm to 100 μm ,
 - Oxide thickness: $t_{ox} \sim 1$ to 10 nm

NMOSFET (or simply NMOS)

- N-channel MOSFET
 - Current conducted by electrons
- · 3 terminal device
 - Source (S): n+ (heavily n-type)
 - Drain (D): n+
 - Gate (G): metal deposited on insulator above channel
- Substrate (called "Body") is a 4th terminal
 - Substrate is p-doped
- Electrons is induced in channel when a positive gate voltage is applied
- · Electrons moves from Source to Drain
 - Current flows from D to S

3

Creating a "Channel" for Current Flow

MOS is a capacitor across an insulator (oxide) When a positive voltage is applied at Gate, electrons are induced under the gate.

At "thresold", sufficient number of electrons form a "channel" between Source and Drain, forming a conductive channel.

Total charge in the channel:

$$|Q| = C_{ox} \cdot WL \cdot (v_{GS} - V_t)$$

where $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ is oxide capacitance

per unit area

$$\varepsilon_{ox} = 3.9 \varepsilon_0 = 3.9 \times 8.854 \times 10^{-12} \text{ F/m}$$

W: gate width

L: gate length

 V_t : Threshold voltage

 $v_{GS} - V_t \equiv v_{OV}$ is called "Overdrive Voltage"

RSAC

Current at Small v_{DS}

When $v_{OV} = v_{GS} - V_t > 0$, a channel is formed between Source and Drain.

Linear charge density in channel:

$$\frac{|Q|}{L} = C_{ox}W \cdot v_{OV}$$

Electric field along the channel

$$|E| = \frac{v_{DS}}{L}$$

Drain current = charge density x velocity:

$$i_D = \frac{|Q|}{L} v_n = \frac{|Q|}{L} \mu_n |E| = C_{ox} W \cdot v_{OV} \mu_n \frac{v_{DS}}{L}$$

$$W$$

$$i_D = \mu_n C_{ox} \frac{W}{L} v_{OV} v_{DS}$$

At small v_{DS} , the transistor is like a gate-controlled variable resistor

BSAC

Current at Small v_{DS}

$$i_D = \mu_n C_{ox} \frac{W}{L} v_{OV} v_{DS}$$

$$= k_n \frac{W}{L} v_{OV} v_{DS}$$

$$= k_n v_{OV} v_{DS}$$
where

 $\vec{k_n} = \mu_n C_{ox}$: process transconducance paramter

$$v_{GS} = V_t + V_{OV1}$$
 $k_n = \mu_n C_{ox} \frac{W}{L}$: MOSFET transconductance

parameter

MOSFET behaves like a linear resistor

$$r_{DS} = \frac{v_{DS}}{i_D} = \frac{1}{k_n v_{OV}}$$

Resistance value can be changed by gate voltage (overdrive voltage)

BSAC

Triode Region ($v_{DS} < v_{OV}$)

As v_{DS} increases, the potential in the channel is no longer a constant. Assume the channel is v(x):

$$i_D = C_{ox}W(v_{GS} - v(x) - V_t)v_n(x)$$

$$v_n(x) = \mu_n |E(x)| = \mu_n \frac{dv(x)}{dx}$$

Note: i_D is still constant along the channel (think Kirchhoff's Current Law)

$$\int\limits_{x=0}^{x=L}i_{D}dx=\int\limits_{x=0}^{x=L}\left(C_{ox}W\left(v_{GS}-v(x)-V_{t}\right)\mu_{n}\frac{dv(x)}{dx}\right)dx$$

Change of variable on right-hand side: $x \rightarrow v$

$$i_D L = \int_{v=0}^{v=v_{DS}} \left(C_{ox} W \left(v_{OV} - v \right) \mu_n \right) dv$$

$$i_D = \mu_n C_{ox} \frac{W}{L} \left(v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right)$$

BSAC

Triode $v_{DS} \le V_{OV}$ Saturation $v_{DS} \ge V_{OV}$ Curve bends because the channel resistance increases with v_{DS} Almost a straight line with slope proportional to v_{OV}

Triode Region $(v_{DS} < v_{OV})$

 $V_{DS \, \text{sat}} = V_{OV}$

When $0 \le v_{DS} \le v_{OV}$

$$i_D = \mu_n C_{ox} \frac{W}{L} \left(v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2 \right)$$

This is called the "Triode Region"

BSAC

PMOSFET (or simply PMOS)

- P-channel MOSFET
 - Current conducted by holes
- · 3 terminal device
 - Source (S): p+ (heavily p-type)
 - Drain (D): p+
 - Gate (G): metal deposited on insulator above channel
- Substrate (called "Body") is a 4th terminal
 - Substrate is n-doped
- Holes is induced in channel when a negative gate voltage is applied
- Holes moves from Source to Drain
 - Current flows from S to D

11

CMOS (Complementary MOS)

- CMOS is the prevalent IC technology today
- Since NMOS and PMOS are formed on oppositely doped substrates, one of the transistor needs to be placed in a "well"
- · PMOS is placed in an "n well" here.
- · Alternatively, NMOS can be placed in p well

BSAC

6