EE143: Microfabrication Technology

## Lecture 1: Administration & Overview; History of IC's

Administration & Overview

- This Lecture: Administration & Overview
- Reading: Handouts
- Lecture Topics:
  - Course information
  - Syllabus
- Welcome to EE 143: "Microfabrication Technology"
  This is our course on wafer-level fabrication of transistor integrated circuits and other microdevices, such as MEMS
  - $\square \rightarrow$  Pass out course info sheet
  - $\blacksquare \rightarrow$  Pass out course syllabus
  - ∠→ Lab juggling; get info on the order of people signing up for labs, then only make those who were last in a section that is full move; must show data on lab section counts on first lecture sheet

 ${}^{t} \rightarrow$  Show calendar and settle the office hours

- -----
- Goals of the course:
  - Teach the skills needed to design and fabricate micro- and nano-devices, including integrated circuits and micro electromechanical systems (MEMS)
  - Design emphasis: This is NOT a survey course; you will be expected to design and layout physical MOS devices (and MEMS devices, if there's time)
  - Hands-on emphasis: Give you actual hands-on experience fabricating micro-devices using a wafer-level process in a cleanroom
- The mechanics of the course are summarized in the course handouts, given out in lecture today
  - Course Information Sheet
    - $\rightarrow$  Course description
    - $\rightarrow$  Course mechanics
    - $\rightarrow$  Textbooks
    - $\rightarrow$  Grading policy
  - Syllabus
    - → Lecture by lecture timeline w/ associated reading sections
    - → Midterm Exam: Thursday, March 18 (tentative)
    - $\rightarrow$  Final Exam: Monday, May 10

- IC History & Review of Devices
- Reading: Jaeger, Chpt. 1
- Lecture Topics:
  - History of IC's
  - Devices of Interest  $\rightarrow$  MOS transistor
    - → MOS Transistor → Micromechanical structure
  - -----
- History of IC's:
  - <u>1834</u>: Difference Engines (mechanical computers)  $\rightarrow$  Gears, cranks, levers, decimal, pipelining!
  - <u>1904</u>: Vacuum tube invented  $\rightarrow$  Yielded the ENIAC vacuum tube computer
  - <u>1925</u>: J. Lilenfield proposed the MOSFET transistor
    - $\rightarrow$  Problem: knowledge of materials not sufficient to get this to work
  - (instead)
  - <u>1947</u>: Invention of the transistor (Bardeen, Brattein, Shockley)
  - <u>1949</u>: Invention of the Bipolar Xsistor (Shockley)
  - 1956: First digital logic gates (Harris)
  - <u>1959</u>: Invention of planar silicon processing (Kilby, Noyce)
  - Then a slew of bipolar technologies





EE143: Microfabrication Technology

Lecture 1: Administration & Overview; History of IC's

- → TTL (1965)
- $\rightarrow$  ECL (1967)
- $\rightarrow$  MTL/I<sup>2</sup>L (1972)
- $\rightarrow$  SiGe heterostructures (1990's)
- Bipolar ruled during the 60's and 70's, because it was faster than anything else, incl. MOS
- But soon, its excessive power consumption caught up, and MOS began to come into favor as small channel lengths boosted the speed of MOS

Mos Structure, Symbol, Equations







- Fairly simple process: only 5 masks; note that this is much smaller than today's proess, which might have more than 28 masking steps
- The rise of MOS occurred in steps:
- <u>1965</u>: PMOS w/ Al gate
  - ightarrow Used <111> wafers because bipolar used them
  - → This forced the use of PMOS, since oxide charge was dense in <111>-Si to oxide interfaces
  - → Oxide charge made it difficult to isolate NMOS devices <a href="https://www.sciences.com">(1)</a>

- <u>1967-70</u>: Al gate NMOS
  - $\rightarrow$  Use of <100>-Si together with sintering reduced oxide charges
  - → Speed faster than PMOS and path to matching bipolar speed could be seen

Copyright @ 2009 Regents of the University of California

**EE143: Microfabrication Technology** 





- <u>1970</u>: Si-gate NMOS
  - $\rightarrow$  Advantage: self-alignment of source & drain
  - $\rightarrow$  Problem: power consumption (similar to bipolar)
- To reduce power consumption, a complementary device was needed
- This is where CMOS looked advantageous



Fig . 2.1



## – <u>1963</u>: pwell CMOS

- → CMOS gate actually came before NMOS or PMOS, but poor control of oxide quality at the time prevented it from thriving
- $\rightarrow$  Why didn't CMOS thrive in 1963?
  - 1. Higher fabrication cost.
  - 2. Latch-up problems.
  - 3. Lower packing density due to need for wells.
  - 4. CMOS slower than NMOS due to larger gate capacitance.
- But soon power became an issue:
- 1971: Intel 4004 4-bit microprocessor
  - $\rightarrow$  2,300 devices (PMOS)
- 1978: Intel 8086 16-bit microprocessor
  - → 29,000 devices (NMOS); power dissipation beginning to get up there: 1.5W @ 8MHz
- <u>1985</u>: Intel 80386
  - $\rightarrow$  275,000 devices  $\rightarrow$  NMOS light bulb!
  - $\rightarrow$  A low power technology was needed
- <u>Result</u>: CMOS takes over
  - $\rightarrow$  Intel 80C86 (CMOS version of 80386)
  - $\rightarrow$  Intel 80486: 1.2 million Xsistors
  - $\rightarrow$  Intel Pentium (P5): 3 million Xsistors
  - → Intel P6: 5.5 million Xsistors in core, 15 million more in secondary cache
  - $\rightarrow\,$  And of course it keeps going to today ...
  - $\rightarrow$  Intel Core 2 Duo: 820 million Xsistors
  - $\rightarrow$

Copyright @ 2009 Regents of the University of California