Lecture 1: Administration \& Overview; History of IC's

Administration \& Overview

- This Lecture: Administration \& Overview
- Reading: Handouts
- Lecture Topics:
- Course information
- Syllabus
- ---
- Welcome to EE 143: "Microfabrication Technology"
- This is our course on wafer-level fabrication of transistor integrated circuits and other microdevices, such as MEMS
\rightarrow Pass out course info sheet
$\checkmark \rightarrow$ Pass out course syllabus
$\square \rightarrow$ Lab juggling: get info on the order of people signing up for labs, then only make those who were last in a section that is full move; must show data on lab section counts on first lecture sheet
\rightarrow Show calendar and settle the office hours
-
- Goals of the course:
- Teach the skills needed to design and fabricate micro- and nano-devices, including integrated circuits and micro electromechanical systems (MEMS)
- Design emphasis: This is NOT a survey course; you will be expected to design and layout physical MOS devices (and MEMS devices, if there's time)
- Hands-on emphasis: Give you actual hands-on experience fabricating micro-devices using a wafer-level process in a cleanroom
- The mechanics of the course are summarized in the course handouts, given out in lecture today
- Course Information Sheet
\rightarrow Course description
\rightarrow Course mechanics
\rightarrow Textbooks
\rightarrow Grading policy
- Syllabus
\rightarrow Lecture by lecture timeline w/ associated reading sections
\rightarrow Midterm Exam: Thursday, March 18 (tentative)
\rightarrow Final Exam: Monday, May 10

IC History \& Review of Devices

- Reading: Jaeger, Chpt. 1
- Lecture Topics:
- History of IC's
- Devices of Interest
\rightarrow MOS transistor
\rightarrow Micromechanical structure
- History of IC's:
- 1834: Difference Engines (mechanical computers) \rightarrow Gears, cranks, levers, decimal, pipelining!
- 1904: Vacuum tube invented
\rightarrow Yielded the ENIAC vacuum tube computer
- 1925: J. Lilenfield proposed the MOSFET transistor
\rightarrow Problem: knowledge of materials not sufficient to get this to work
- (instead)
- 1947: Invention of the transistor (Bardeen, Brattein, Shockley)
- 1949: Invention of the Bipolar Xsistor (Shockley)
- 1956: First digital logic gates (Harris)
- 1959: Invention of planar silicon processing (Kilby, Noyce)
- Then a slew of bipolar technologies

Lecture 1: Administration \& Overview; History of IC's
\rightarrow TTL (1965)
\rightarrow ECL (1967)
\rightarrow MTL/I I^{2} (1972)
\rightarrow SiGe heterostructures (1990's)

- Bipolar ruled during the 60's and 70's, because it was faster than anything else, incl. MOS
- But soon, its excessive power consumption caught up, and MOS began to come into favor as small channel lengths boosted the speed of MOS

Mathematics Model

(1) Cut-Offlegian: $\left(V_{g s} \leq V_{t}\right)$
$I_{g}=I_{b}=0 ; I_{d}=0$
(2) Linear (or Triode) Region: $\left(V_{g s}-V_{t n} \geq V_{d s} \geq 0\right)$

$$
I_{g}=I_{b}=0 ; I_{d}=\mu_{n} C_{\sigma x} \frac{W}{L}\left(V_{g s}-V_{t n}-\frac{V_{d s}}{2}\right) V_{d s}
$$

$$
=k_{n}\left(V_{g s}-V_{t n}-\frac{V_{d r}}{2}\right) V_{d s}
$$

(3) Saturation Region. $\left(V_{d s} \geqslant V_{g s}-V_{t n} \geqslant 0\right)$

$$
\begin{aligned}
I_{g}=I_{b}=0 ; I_{d} & =\frac{1}{2} \mu_{n} C_{x} \frac{w}{L}\left(V_{g s}-V_{t n}\right)^{2}\left(1+\lambda V_{d s}\right) \\
& =\frac{1}{2} k_{n}\left(V_{g s}-V_{t n}\right)^{2}\left(1+\lambda V_{d r}\right)
\end{aligned}
$$

whee:
$\mu_{n} \triangleq e$ mobility in the channd
$C_{G x} \triangleq$ gate oxide capacitance per unit area
$k_{n}=k_{n}^{\prime} \frac{W}{L}=\mu_{n} C_{x} \frac{W}{L}$
$I_{g}: I_{b}=0$ fou all regions (at least for $d c$)

$$
\begin{aligned}
& V_{t n}=f\left(V_{s B}\right)=V_{t_{0}}+\gamma\left(\sqrt{V_{s B}-2\left|\phi_{f}\right|}-\sqrt{2\left|\phi_{f}\right|}\right) \\
& \text { Body Fzofa } \rightarrow \gamma=\frac{1}{C_{s x}} \sqrt{2 q \epsilon_{s} N_{s u b}}<\text { substrate dopily } \\
& \text { enc. }
\end{aligned}
$$

NMOS Device Cross-Section

(a)

- Fairly simple process: only 5 masks; note that this is much smaller than today's proess, which might have more than 28 masking steps
- The rise of MOS occurred in steps:
- 1965: PMOS w/ Al gate
\rightarrow Used <111> wafers because bipolar used them
\rightarrow This forced the use of PMOS, since oxide charge was dense in <111>-Si to oxide interfaces
\rightarrow Oxide charge made it difficult to isolate NMOS devices $\quad\langle I I\rangle-S_{i} \rightarrow$ pools to (t) interfio

- 1967-70: Al gate NMOS
\rightarrow Use of <100>-Si together with sintering reduced oxide charges
\rightarrow Speed faster than PMOS and path to matching bipolar speed could be seen

Lecture 1: Administration \& Overview; History of IC's

- 1970: Si-gate NMOS
\rightarrow Advantage: self-alignment of source \& drain
\rightarrow Problem: power consumption (similar to bipolar)
- To reduce power consumption, a complementary device was needed
- This is where CMOS looked advantageous

Fig. 2.1

