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Oxidation
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Thermal Oxidation of Silicon

• Achieved by heating the silicon wafer to a high temperature 
(~900oC to 1200oC) in an atmosphere containing pure oxygen 
or water vapor

• Enabling reactions:

For dry oxygen: For water vapor:

Si + O2 → SiO2

Schematically:

Si + 2H2O → SiO2 + 2H2

High T (~900oC – 1200oC)

In dry O2
or

Water vapor

Si Wafer Si Wafer

56%

44%

→ →
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Oxidation Modeling

(1) Initially:  (no oxide @ surface)

(2) As oxide builds up:

Growth rate governed more 
by rate of diffusion to the 
silicon-oxide interface

gas stream

Si
oxide

Reactant must diffuse to Si 
surface where the oxidation 
reaction takes place

gas stream

Si
Growth rate determined by 
reaction rate @ the surface
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Oxidation Modeling (cont.)
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Oxidation Modeling (cont.)

At the Si-SiO2 interface:
Oxidation rate Ni J    Ni (2)

∴

∝ ∴ ∝ is NkJ =

Reaction rate constant 
@ Si-SiO2 interfaceCombining (1) and (2):
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Oxidation Modeling (cont.)
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# of molecules of oxidizing 
species incorporated into a 
unit volume of oxide
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Oxide Thickness Versus Time
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[Xi = initial oxide thickness]

Result:
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Oxidation Modeling (cont.)
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For shorter times:

Taylor expansion (first 
term after 1’s cancel)

oxide growth 
limited by reaction 
at the Si-SiO2
interface

linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

τ>>t Parabolic 
rate constant
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Oxidation Rate Constants

• Above theory is great … but usually, the equations are not 
used in practice, since measured data is available

Rather, oxidation growth charts are used
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Oxidation Growth Charts
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Using the Oxidation Growth Charts

Example:
• <100> silicon
• Starting oxide 
thickness: Xi=100nm

•Want to do wet 
oxidation @ 1000oC to 
achieve Xox=230nm

•What is the time t
required for this?

Growth Chart for <100> Silicon
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Factors Affecting Oxidation

• In summary, oxide thickness is dependent upon:
1. Time of oxidation
2. Temperature of oxidation
3. Partial pressure of oxidizing species (∝ No)

• Also dependent on:
4. Reactant type:

Dry O2
Water vapor faster oxidation, since water has a 

higher solubility (i.e., D) in SiO2 than O2
5. Crystal orientation:

<111> ← faster, because there are more bonds            
available at the Si-surface

<100> ← fewer interface traps; smaller # of 
unsatisfied Si-bonds at the Si-SiO2 interface
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Factors Affecting Oxidation

6. Impurity doping:
P: increases linear rate const.

no affect on parabolic rate constant
faster initial growth → surface reaction rate limited

B: no effect on linear rate const.
increases parabolic rate const.
faster growth over an initial oxide → diffusion faster
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Dopant Redistribution During Oxidation

• This must be considered and designed for when generating 
any process flow, especially for transistor circuits, e.g., 
CMOS

• During oxidation, the impurity concentration at the Si-SiO2. 
interface can increase (pile-up) or deplete, depending upon 
the dopant type

• Whether a particular impurity depletes or piles up @ the 
interface depends on:
1. Diffusion coefficient, D (of the impurity in SiO2)

2. Segregation coefficient, m: 

2SiO  in  conc.  equil.  impurity
Si  in  conc.  equil.  impurity

=m

EE 143: Microfabrication Technology LecM 2 C. Nguyen  2/14/10  16

Dopant Behavior During Oxidation

depl. f/Si, depl. from oxide

pile up in Si, very little 
diff. into SiO2

depl. f/Si surface, depl. 
from oxide

depl. f/Si surface, pile up 
in oxide

Dopant Behavior During 
Oxidation

Large20 (large)Ga

Small~10 (large)P, Sn, As

Large<0.3 (small)B (oxidation w/H2)

Small<0.3 (small)B

D in SiO2mImpurity

e.g., wet oxidation 
where H2 is present 
as a by-product.

So large that it depletes 
the dopant @ the Si 
surface despite

• Segregation coefficient (m) and diffusion constant (D) 
combine to determine dopant behavior during oxidation:
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Dopant Redistribution During Oxidation

B B (oxidation w/ H2)

P, Sn, As Ga


