

Copyright @ 2010 Regents of the University of California at Berkeley

Copyright @ 2010 Regents of the University of California at Berkeley

Oxidation Modeling (cont.) Find an expression for $X_{OX}(t)$: oxidizing flux Rate of change of oxide $= \frac{dX_{OX}}{dt} = \frac{J}{M} = \frac{DN_O/M}{X_{OX} + D/k_s}$ (3) # of molecules of oxidizing species incorporated into a unit volume of oxide $= 2.2 \times 10^{22} cm^{-3}$ for O_2 $= 4.4 \times 10^{22} cm^{-3}$ for H_2O Solve (3) for $X_{OX}(t)$: [Initial condition $X_{OX}(t=0) = X_i$] $\frac{dX_{OX}}{dt} = \frac{DN_O/M}{X_{OX} + D/k_s} = \int_{X_i}^{X_{OX}} (X_{OX} + \frac{D}{k_s}) dX_{OX} = \int_{0}^{t} \frac{DN_O}{M} dt$

Copyright @ 2010 Regents of the University of California at Berkeley

Table 6–2	Rate constants describing (111) silicon oxidation kinetics at 1 Atm tota pressure. For the corresponding values for (100) silicon, all C ₂ values should be divided by 1.68.	
Ambient	B	B/A
Dry O ₂	$C_1 = 7.72 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 6.23 \times 10^6 \mu\mathrm{m}\mathrm{hr}^{-1}$
	$E_1 = 1.23 \text{ eV}$	$E_2 = 2.0 \text{ eV}$
Wet O ₂	$C_1 = 2.14 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 8.95 \times 10^7 \mu\mathrm{m}\mathrm{hr}^{-1}$
	$E_1 = 0.71 \text{ eV}$	$E_2 = 2.05 \text{ eV}$
H ₂ O	$C_1 = 3.86 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 1.63 \times 10^8 \mu\mathrm{m}\mathrm{hr}^{-1}$
	$E_1 = 0.78 \text{ eV}$	$E_2=2.05~{\rm eV}$
ve theor d in prac lather, c	ry is great but usually, tice, since measured dat oxidation growth charts o	the equations are ta is available are used

Copyright @ 2010 Regents of the University of California at Berkeley

Copyright @ 2010 Regents of the University of California at Berkeley

