

Etching Basics

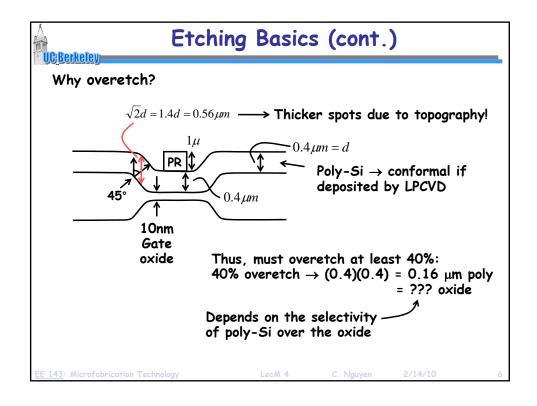
UC Berkeley

- * Removal of material over designated areas of the wafer
- Two important metrics:
 - 1. Anisotropy
 - 2. Selectivity
- 1. Anisotropy
 - a) Isotopic Etching (most wet etches)

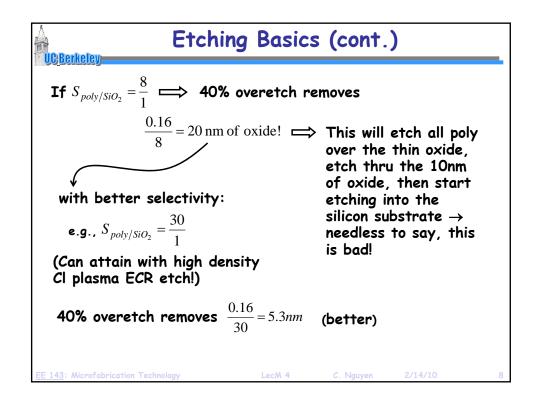
If 100% isotropic: $d_f = d + 2h$

Define: $B = d_f - d$ If $B = 2h \Rightarrow isotropic$

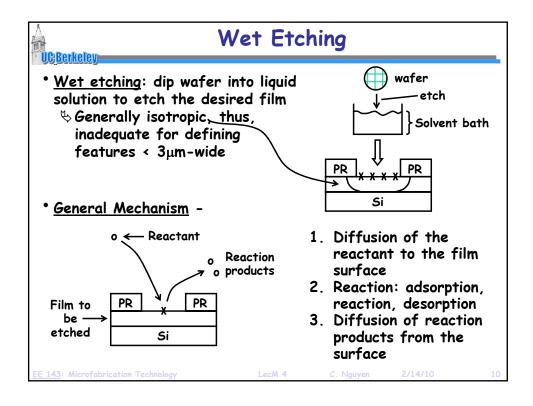
143: Microfabrication Technology


ecM 4

C. Nguyen


2/14/10

b) Partially Isotropic: B < 2h (most dry etches, e.g., plasma etching) Degree of Anisotropy: (definition) $A_f = 1 - \frac{B}{2h} = 0$ if 100% isotropic $0 < A_f \le 1$ anisotropic PR PR


Etching Basics (cont.) **UC Berkeley** 2. Selectivity -Only poly-Si PR PR etched (no etching Ideal Poly-Si of PR or SiO2) Poly-Si Etch SiO₂ SiO₂ Si Si Perfect selectivity Actual Etch ∠ PR partially etched PR Poly-Si SiO₂ partially etched after SiO₂ some overetch of the polysilicon

Etching Basics (cont.) Define selectivity of A over B: $S_{ab} = \frac{E.R._a}{E.R._b} \longleftarrow \text{ Etch rate of A}$ Selectivity of A over Be.g., wet poly etch (HNO $_3$ + NH $_4$ + H $_2$ O) $S_{poly/SiO_2} = \frac{15}{1} \quad \text{(very good selectivity)}$ $S_{poly/PR} = \text{ Very high (but PR can still peel off after soaking for > 30 min., so beware)}$ e.g., polysilicon dry etch: $S_{poly/SiO_2} = \frac{5-7}{1} \quad \text{(but depends on type of etcher)}$ $S_{poly/PR} = \frac{4}{1} \quad \text{Bosch: 100:1 (or better)}$

CTN

Lecture Module 4: Etching

Wet Etching (cont.)

UC Berkeley

- There are many processes by which wet etching can occur
 - ☼ Could be as simple as dissolution of the film into the solvent solution
 - Usually, it involves one or more chemical reactions
 - Oxidation-reduction (redox) is very common:
 - (a) Form layer of oxide
 - (b) Dissolve/react away the oxide

Advantages:

- 1. High throughput process \rightarrow can etch many wafers in a single bath
- 2. Usually fast etch rates (compared to many dry etch processes)
- 3. Usually excellent selectivity to the film of interest

E 143: Microfabrication Technology

LecM 4

C. Nguyen

2/14/10

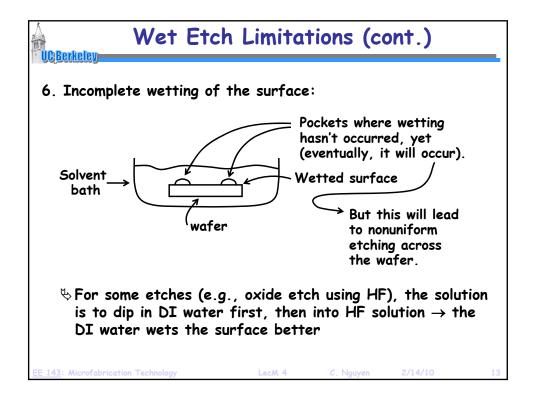
11

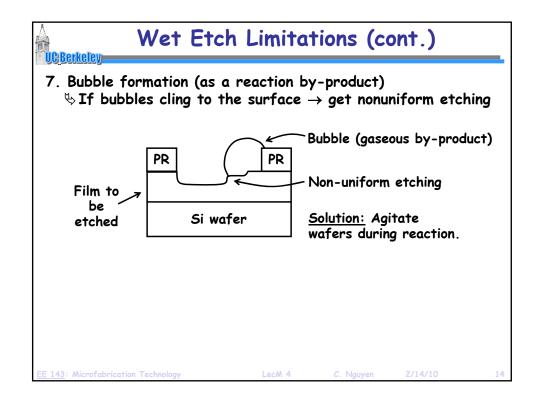
Wet Etching Limitations

UC Berkeley

- 1. Isotropic

 - ♥ But this is also an advantage of wet etching, e.g., if used for undercutting for MEMS
- 2. Higher cost of etchants & DI water compared w/ dry etch gas expenses (in general, but not true vs. deep etchers)
- 3. Safety
 - Chemical handling is a hazard
- 4. Exhaust fumes and potential for explosion
 - Need to perform wet etches under hood
- 5. Resist adhesion problems
 - ♦ Need HMDS (but this isn't so bad)


E 143: Microfabrication Technology


LecM 4

C. Nguyen

/10

12

Some Common Wet Etch Chemistries

Wet Etching Silicon:

of SiO₂

Common: Si + HNO₃ + 6HF \longrightarrow H₂SiF₆ + HNO₂ + H₂ + H₂O

(isotropic)

(nitric (hydrofluoric acid)

(1) forms a layer (2) etches away

Different mixture combinations yield different etch rates.

E 143: Microfabrication Technolog

.ecM

C. Nauven

the SiO2

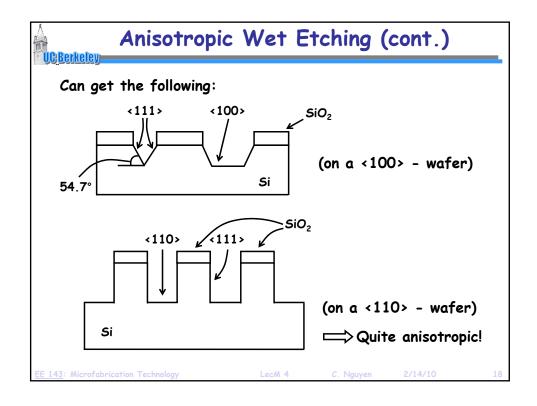
2/14/10

Silicon Crystal Orientation **UC Berkeley** <110> plane ⊥ coordinate @ coordinate to this vector (1,1,0)@ coordinate (1,0,0)defines <100> plane ⊥ (1,1,1), <111> plane \perp to resulting vectorto this vector vector Silicon has the basic diamond structure ⋄ Two merged FCC cells offset by (a/4) in x, y, and z axes ♦ From right: # available bonds/cm² <111> ↑ # available bonds/cm² <110> # available bonds/cm² <100>

Anisotropic Wet Etching

Anisotropic etches also available for single crystal Si:

Orientation-dependent etching: <111>-plane more densely packed than <100>-plane

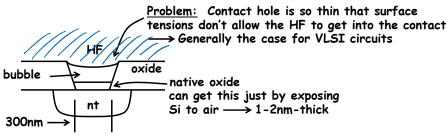

Slower E.R.

Faster E.R.

One such solvent: KOH + isopropyl alcohol

(e.g., 23.4 wt% KOH, 13.3 wt% isopropyl alcohol, 63 wt% H₂O)

E.R. (100) = 100 × E.R. (111)



UC Berkeley

Wet Etching SiO₂

 $SiO_2 + 6HF \longrightarrow H_2 + SiF_6 + 2H_2O$

Generally used to clear out residual oxides from contacts

<u>Solution:</u> add a surfactant (e.g., Triton X) to the BHF before the contact clear etch

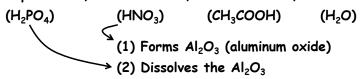
- 1. Improves the ability of HF to wet the surface (hence, get into the contact)
- 2. Suppresses the formation of etch by-products, which otherwise can block further reaction if by-products get caught in the contact

E 143: Microfabrication Technology

LecM 4

C. Nguyen

2/14/10


19

More Wet Etch Chemistries

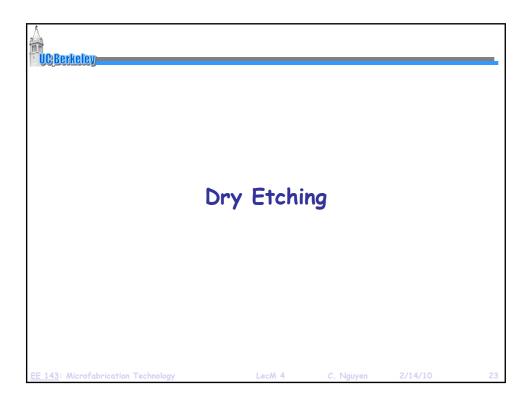
UC Berkeley

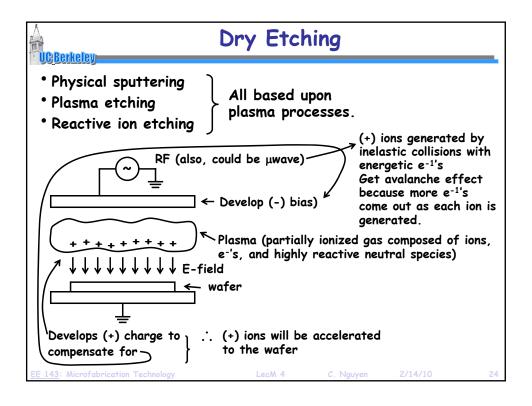
- Wet etching silicon nitride
 - Use hot phosphoric acid: 85% phosphoric acid @ 180°C
 - ⇔ Etch rate ~ 10 nm/min (quite slow)
 - \$ Problem: PR lifted during such etching
 - \diamondsuit Solution: use SiO₂ as an etch mask (E.R. ~2.5 nm/min)
 - ullet A hassle o dry etch processes more common than wet
- Wet etchining aluminum
 - ♦ Typical etch solution composition:

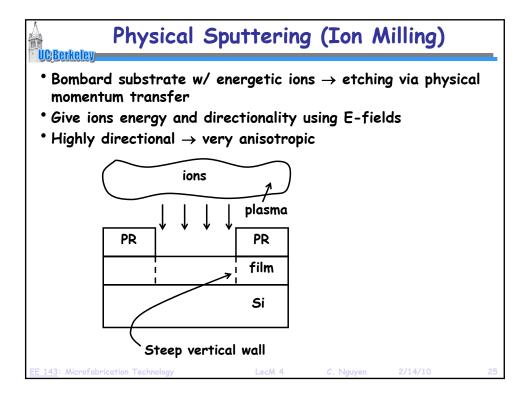
80% phoshporic acid, 5% nitric acid, 5% acetic acid, 10% water

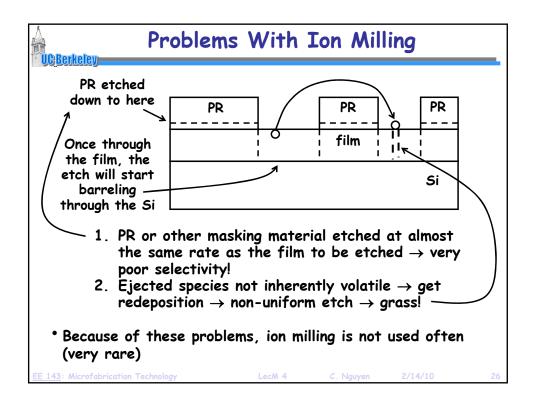
- $^{\buildrel phi}$ Problem: H₂ gas bubbles adhere firmlly to the surface \rightarrow delay the etch \rightarrow need a 10-50% overetch time
- ♦ <u>Solution</u>: mechanical agitation, periodic removal of wafers from etching solution

EE 143: Microfabrication Technology


LecM 4


C. Nguyen


2/14/10


		Wet-Etch	Dates for	Microma	chining	and IC	Processine	(Å/min)									
The top etch rate was measured by the authors with free	h solutions, etc. Th									ors and oth	ers in our	lab under l	ess carefu	illy contr	olled conc	fitions.	
ETCHANT	MATERIAL																
SQUIPMENT	TARGET	SC Si	Poly	Poly	Wet	Dry	LTO	PSG	PSG	Stoic	Low-o	ΑV	Sput	Sput	Sput	oco	Olin
CONDITIONS	MATERIAL	<100>	6,	undop	Ox	Ox	undop	unani	annid	Nitrid	Nitrid	2% Si	Tung	Ti F	T/W	820PR	HetPf
Concentrated HF (49%) Wet Sink Room Temperature	Silicon oxides		0		23k 18k 23k	F	>14k	F	36k	140	52 30 52	42 0 42	⊲0	1		PO	,
10:1 HF Wet Sink	Silicon oxides		7	0	230	230	340	15k	4700	11	3	2500 2500 12k	0	Ilk	<70	0	
Room Temperature 25:1 HF Wet Sink	Silicon		0	0	97	95	150	w	1500	6	1	W	0		-	0	,
Room Temperature 5:1 BHF Wet Sink	Silicon	-	9	2	1000	1000	1200	6800	4400 3500	9	4 3	1400	<20 0.25	F	1000	0	Η,
Room Temperature	oxides				1080				4400		4		20				
Phosphoric Acid (R5%) Heused Bath with Reflux 166°C	Silicon nitrides		7		0.7	0.8	<1	37	24 9 24	28 28 42	19 19 42	9800				550	39
Silicon Exchant (126 HNO ₃ : 60 H ₂ O: 5 NH ₂ F) Wet Sink Room Temperature	Silicon	1500	3100 1200 6000	1000	87	w	110	4000	1700	2	. 3	4000	130	3000	-	0	
KOH (1 KOH : 2 H ₂ O by weight) Heard Stirred Bath 80°C	<100> Silicen	14k	>10k	F	77 41 77		94	w	380		0	F	0			F	,
Aluminum Buthant Type A (16 H ₂ PO ₄ : 1 HNO ₃ : 1 HAc: 2 H ₂ O) Housed Bath SO [*] C	Alumnium		<10	49	0	0	0		<10	0	2	5600 2600 6600		0		0	
Titanium Eschant (20 H ₂ O : 1 H ₂ O ₃ : 1 HF) Wet Slink Room Temperature	Titunium		12		120	w	w	w	2100	8	4	w	0	8800		0	
H ₂ O ₃ (30%) Wet Sink	Tungston	-	0	0	0	0	0	0	0	0	0	<20	190 190 1000	0	60 60 150	a	(
Room Temperature Piranha (-50 H_SO ₄ : 1 H ₂ O ₂) Heand Bath	Cleaning off metals and		0		0	0	0		0	0	0	1800		2400		P	,
130°C	organics		_			0	0		0		0	0	١.	0		>44k	>39
Acetone Wet Sink Room Temperature	Photoresist		0	°	٥	ľ			Ů	Ů	Ů	°		Ľ			

	oopular films:					
Material Wet etchant		Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]		
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920		
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250		
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150		
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150 35-3500		
Photoresist	Acetone	>4000	O ₂			
Gold	KI	40	n/a	n/a		

Plasma Etching

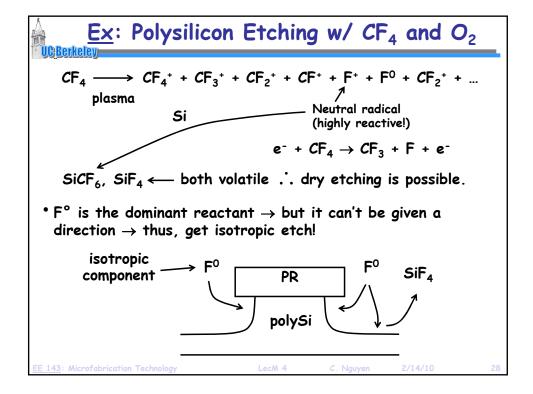
UCBerkeley

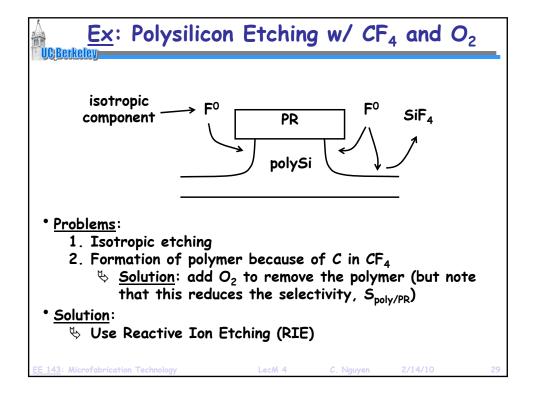
- Plasma (gas glow discharge) creates reactive species that chemically react w/ the film in question
- * Result: much better selectivity, but get an isotropic etch

Plasma Etching Mechanism:

- 1. Reactive species generated in a plasma.
- 2. Reactive species diffuse to the surface of material to be etched.
- 3. Species adsorbed on the surface.
- 4. Chemical reaction.
- 5. By-product desorbed from surface.
- 6. Desorbed species diffuse into the bulk of the gas

PR 3 1 4 PR
Film to be etched


Si


MOST IMPORTANT
STEP! (determines
whether plasma etching
is possible or not.)

<u>E 143</u>: Microfabrication Technology

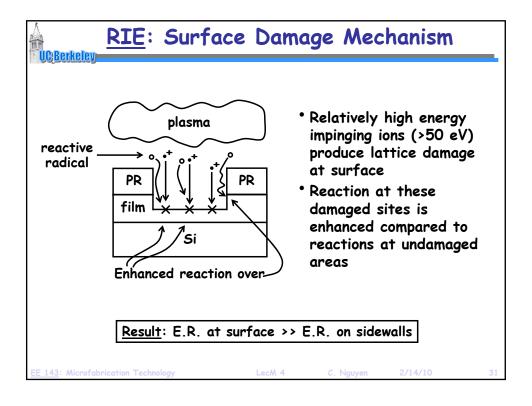
LecM 4

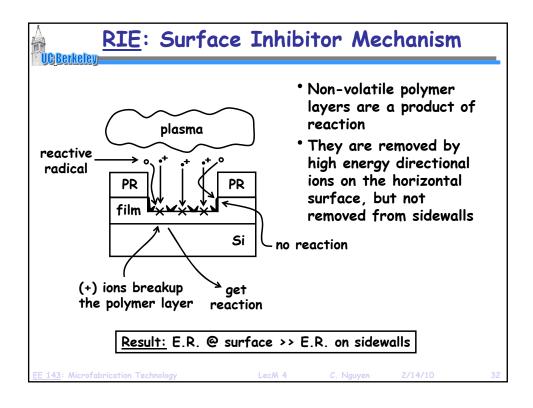
C. Nguyen 2/14/10

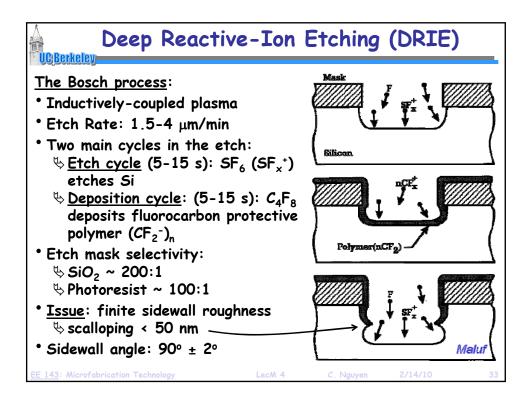
Reactive Ion Etching (RIE)

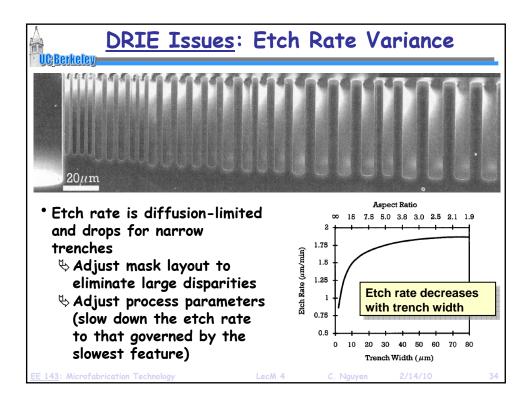
- Use ion bombardment to aid and enhance reactive etching in
 - a particular direction

 \$\frac{1}{2} \text{Result: directional, anisotropic etching!}
- RIE is somewhat of a misnomer
 - ♥ It's not ions that react ... rather, it's still the neutral species that dominate reaction
 - ♥ Tons just enhance reaction of these neutral radicals in a specific direction
- * Two principle postulated mechanisms behind RIE
 - 1. Surface damage mechanism
 - 2. Surface inhibitor mechanism


E 143: Microfabrication Technology


LecM 4


C. Nguyen


/14/10

30

