Consider a vector in the standard basis,
\[
\vec{x} = a\vec{e}_1 + b\vec{e}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = I\vec{x}
\] (1)
where, \(a, b\) are \(\vec{x}\)’s coordinates in the standard basis.

Given a new set of basis vectors, \(\mathcal{V} = \{\vec{v}_1, \vec{v}_2\}\), if \(\vec{x} \in \text{span}\{\mathcal{V}\}\), then we can find new coordinates in terms of this new basis. The new coordinates are called \(a_v, b_v\) and are described,
\[
\vec{x} = a_v\vec{v}_1 + b_v\vec{v}_2 = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} \begin{bmatrix} a_v \\ b_v \end{bmatrix} = \mathcal{V}\vec{x}_v
\] (2)

Now consider another set of basis vectors, \(\mathcal{U} = \{\vec{u}_1, \vec{u}_2\}\), if \(\vec{x} \in \text{span}\{\mathcal{U}\}\), then we can find the coordinates in terms of this basis. These coordinates are called \(a_u, b_u\) and are described,
\[
\vec{x} = a_u\vec{u}_1 + b_u\vec{u}_2 = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix} \begin{bmatrix} a_u \\ b_u \end{bmatrix} = \mathcal{U}\vec{x}_u
\] (3)

All of these bases are equivalent representations of any vector \(\vec{x} \in \mathbb{R}^2\); each with their own set of coordinates.
\[
\vec{x} = \begin{bmatrix} \vec{e}_1 \\ \vec{e}_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix} \begin{bmatrix} a_u \\ b_u \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} \begin{bmatrix} a_v \\ b_v \end{bmatrix}
\] (4)

\[
\vec{x} = I\vec{x} = \mathcal{V}\vec{x}_v = \mathcal{U}\vec{x}_u
\] (5)

1. Coordinate Change Examples

(a) **Transformation From Standard Basis To Another Basis in \(\mathbb{R}^3\)**

Calculate the coordinate transformation between the following bases
\[
\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix},
\]
i.e. find a matrix \(\mathbf{T}\), such that \(\vec{x}_v = \mathbf{T}\vec{x}_u\) where \(\vec{x}_u\) contains the coordinates of a vector in a basis of the columns of \(\mathbf{U}\) and \(\vec{x}_v\) is the coordinates of the same vector in the basis of the columns of \(\mathbf{V}\).

Let \(\vec{x}_u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) and compute \(\vec{x}_v\). Repeat this for \(\vec{x}_u = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\). Now let \(\vec{x}_u = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}\). What is \(\vec{x}_v\)?
(b) Transformation Between Two Bases in \mathbb{R}^3

Calculate the coordinate transformation between the following bases

\[
U = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad V = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix},
\]

i.e. find a matrix T, such that $\vec{x}_v = T\vec{x}_u$. Let $\vec{x}_u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and compute \vec{x}_v. Repeat this for $\vec{x}_u = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Now let $\vec{x}_u = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$. What is \vec{x}_v?

(c) What is the coordinate transformation from \vec{x}_v to \vec{x}_u, i.e. find W such $\vec{x}_u = W\vec{x}_v$?

(d) Transformation Between General Bases in \mathbb{R}^2

Calculate the coordinate transformation between the following bases

\[
U = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix},
\]

i.e. find a matrix T, such that $\vec{x}_v = T\vec{x}_u$. Let $\vec{x}_u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and compute \vec{x}_v. Repeat this for $\vec{x}_u = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now let $\vec{x}_u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. What is \vec{x}_v?

2. Proofs

(a) Let A be an invertible matrix. Show that if λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.

3. Steady and Unsteady States

(a) You’re given the matrix M (below) which describes some physical system (could describe either people or water):

\[
M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}
\]

Find the eigenspaces associated with the following eigenvalues:

i. span(\vec{v}_1), associated with $\lambda_1 = 1$

ii. span(\vec{v}_2), associated with $\lambda_2 = 2$

iii. span(\vec{v}_3), associated with $\lambda_3 = \frac{1}{2}$

(b) Define $\vec{x} = \alpha\vec{v}_1 + \beta\vec{v}_2 + \gamma\vec{v}_3$. The values α, β, γ are the coordinates for the basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. For each of the cases in the table, determine if

$$\lim_{n \to \infty} M^n \vec{x}$$

converges. If it does, what does it converge to?
$\begin{array}{ccc|c} \alpha & \beta & \gamma & \text{Converges?} \\ \hline 0 & 0 & \neq 0 & \hline 0 & \neq 0 & 0 & \hline 0 & \neq 0 & \neq 0 & \hline \neq 0 & 0 & 0 & \hline \neq 0 & 0 & \neq 0 & \hline \neq 0 & \neq 0 & 0 & \hline \neq 0 & \neq 0 & \neq 0 & \end{array}$

4. More Practice with Column Spaces and Null Spaces

- The **column space** is the possible outputs of a transformation/function/linear operation. It is also the **span** of the column vectors of the matrix.
- The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?

ii. What is the null space of A? What is its dimension?

iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?

iv. Do the columns of A form a basis for \mathbb{R}^2 (or \mathbb{R}^3 for part (b))? Why or why not?

(a) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

(b) $\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$

(c) $\begin{bmatrix} -2 & 4 \\ 3 & -6 \end{bmatrix}$