Fun with Stacked Caps

Consider a capacitor circuit with switches. Suppose that in Phase 1, the circuit looks like the circuit in Figure 1:

Figure 1: Phase 1
Since the voltage source forces V_{s} across each capacitor, we do not need the initial state of the capacitors to determine the charges.

$$
\begin{aligned}
Q_{A 1} & =C_{A} V_{s} \\
Q_{B 1} & =C_{B} V_{s}
\end{aligned}
$$

Suppose we flip switches such that the circuit looks like Figure 2:

Figure 2: Phase 2
We note that there are no paths for current to flow or charge to move.

Therefore:

$$
\begin{array}{ll}
Q_{A 2}=Q_{A 1}, & V_{A 2}=\frac{Q_{A 1}}{C_{A}}=V_{s} \\
Q_{B 2}=Q_{B 1}, & V_{B 2}=\frac{Q_{B 1}}{C_{A}}=V_{s}
\end{array}
$$

Suppose we now attach a voltage source V_{x} to this circuit:

Figure 3: Phase 3
ΔQ denotes the change of charge on C_{A}. Therefore:

$$
\Delta Q=Q_{A 3}-Q_{A 2}
$$

From charge conservation on node D, we obtain:

$$
-Q_{A 3}+Q_{B 3}=-Q_{A 2}+Q_{B 2}
$$

By rearranging the above two equations, we obtain:

$$
\Delta Q=Q_{B 3}-Q_{B 2}
$$

We conclude that a change in charge is the same on both capacitors. This change in charge ΔQ is the charge supplied by the new voltage source V_{x}.

Using KVL:

$$
\begin{align*}
& V_{x}=V_{A 3}+V_{B 3} \\
& V_{x}=\frac{Q_{A 3}}{C_{A}}+\frac{Q_{B 3}}{C_{B}} \\
& V_{x}=\frac{Q_{A 2}+\Delta Q}{C_{A}}+\frac{Q_{B 2}+\Delta Q}{C_{B}} \tag{1}\\
& V_{x}=\frac{Q_{A 1}}{C_{A}}+\frac{Q_{B 1}}{C_{B}}+\Delta Q\left(\frac{1}{C_{A}}+\frac{1}{C_{B}}\right) \tag{2}
\end{align*}
$$

Note that only if $Q_{A 1}=Q_{B 1}=0 \Longrightarrow$

$$
\Delta Q=V_{x} \cdot \underbrace{\left(C_{A} \| C_{B}\right)}_{C_{e q}}
$$

Otherwise, we need to take into account the prior charge on caps $\left(Q_{A 1}, Q_{B 1}\right)$ as in (1). In general:

$$
\Delta Q=\left(V_{x}-\frac{Q_{A 1}}{C_{A}}-\frac{Q_{B 1}}{C_{B}}\right) \cdot\left(C_{A} \| C_{B}\right)
$$

For this example:

$$
\begin{array}{r}
\Delta Q=\left(V_{x}-V_{s}-V_{s}\right) \cdot\left(C_{A} \| C_{B}\right) \\
\Delta Q=\left(V_{x}-2 V_{s}\right)\left(C_{A} \| C_{B}\right)
\end{array}
$$

