
EECS 16A Designing Information Devices and Systems I
Fall 2023 Lecture Notes Note 22

22.1 Positioning Sytems: Trilateration and Correlation
In this note, we’ll introduce two concepts that are critical in our positioning system, trilateration and corre-
lation.

To begin, let’s review the underlying concepts of GPS, introduced in the previous note. Recall that a GPS
system consists of two parts: (1) a receiver, with unknown location, and (2) a set of “beacons”, that send
messages and have known location. In GPS, these are satellites, but they could be anything that can broadcast
a message, such as a speaker sending audio signals or a radio transmitter on the ground. The goal is to
determine the location of the receiver from the beacon’s messages.

We split the process of localizing the receiver into two steps:

1. Find the distances from the receiver to each beacon, based on the messages received.
2. Combine the distance measurements to determine the receiver’s location.

We’ll used correlation to determine the distances, and we’ll use trilateration to find the position based on
the distance measurements and known beacon locations. Let’s start with trilateration.

22.2 Trilateration
In this section, we’ll assume that we’ve already determined the distance from the receiver to each beacon
(we’ll explain how to measure this distance in the next section).

Let’s imagine we have a situation like the one below. We know the locations of the beacons a⃗1, a⃗2, a⃗3, but
don’t know the location of the point at x⃗ (we’ll be trying to find out what x⃗ is). We do know the distances
d1,d2,d3. We’re trying to find the coordinates of x⃗ in this diagram:

a⃗1
a⃗2

a⃗3

x⃗

d1

d2

d3
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We know that:

1. ∥⃗x− a⃗1∥2 = d2
1

2. ∥⃗x− a⃗2∥2 = d2
2

3. ∥⃗x− a⃗3∥2 = d2
3

Rewriting these using transpose notation we get:

x⃗T x⃗− 2⃗aT
1 x⃗+ ∥⃗a1∥2 = d2

1 (1)

x⃗T x⃗− 2⃗aT
2 x⃗+ ∥⃗a2∥2 = d2

2 (2)

x⃗T x⃗− 2⃗aT
3 x⃗+ ∥⃗a3∥2 = d2

3 (3)

But we have squared terms here involving unknown variable x⃗. That’s not really conducive to our style of
computation - we prefer only linear terms in unknowns, so we can use linear algebra.

For this, we use a trick. Let’s subtract equation 1 from equation 2, and separately again from equation 3.
Then we get:

2(⃗a1 − a⃗2)
T x⃗ = ∥⃗a1∥2 −∥⃗a2∥2 −d2

1 +d2
2

and

2(⃗a1 − a⃗3)
T x⃗ = ∥⃗a1∥2 −∥⃗a3∥2 −d2

1 +d2
3

These two equations are linear in x⃗, so we can then stick them into a matrix:

[
2(⃗a1 − a⃗2)

T

2(⃗a1 − a⃗3)
T

]
x⃗ =

[
∥⃗a1∥2 −∥⃗a2∥2 −d2

1 +d2
2

∥⃗a1∥2 −∥⃗a3∥2 −d2
1 +d2

3

]
.

This system can be solved for a location. Three circles uniquely define a point in 2D. The argument extends
in 3D to four spheres. And in 4D to five hyper-spheres. (In the real-world, time is the fourth dimension we
need to solve for.)

22.3 Finding distances with correlation
Now, we’ll explore how to find the distances between the receiver and the beacons. To do this, we’ll need
to be a little more explicit about what messages the beacons are sending. We will generally say that the
beacons are sending “signals.”
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22.3.1 Signals
A signal is a message that contains information as a function of time1. We call a signal a discrete-time signal
if it is only defined at specific points in time (for example, every minute). In contrast, a continuous-time
signal is defined over all time. In this class we’ll focus on discrete-time signals.

We can represent a discrete-time signal as a list of numbers. It’s convenient to write the signal as a vector
where each element is the value at a single time point – then we can use all of the concepts of matrix algebra
on signals.

Consider the following example: a beacon in our GPS system is sending a message using radio waves.
The amplitude of the radio wave as a function of time is a signal, and we only consider discrete times (for
example, every second). We can represent the signal graphically or as a vector:

s⃗ =



0
1
2
3
−2
−1
0
1
2



Every element of the vector represents the signal value at one timestep. We’ll use the notation s[k] to
represent the k-th element of the vector where initial element is at k = 0. For example, in the signal s⃗ above,
s[0] = 0, s[1] = 1, etc.

22.4 Cross-Correlation
The cross-correlation is a measure of the similarity between two signals x⃗ and y⃗ based on the inner product.
We compute the inner product ⟨⃗x, y⃗⟩, and then the same with y⃗ shifted by 1, then shifted by 2, and so on.
First we’ll define cross-correlation more formally, then we’ll explore how we can use this concept to find
the distance between a beacon and receiver.

22.4.1 Cross-Correlation
Cross-correlation is defined as follows:

corr⃗x(⃗y)[k] =
∞

∑
i=−∞

x[i] y[i− k] (4)

where x⃗ and y⃗ are input signals and corr⃗x(⃗y)[k] is the k-th element of their cross-correlation.

1Signals can also be functions of other variables, such as space (like in an image). However, for simplicity we’ll define them as
a function of time, while knowing that they can be used more generally.
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Let’s break this down: If we would like to find the value of the cross correlation at 0, we plug k = 0 into the
equation:

corr⃗x(⃗y)[0] =
∞

∑
n=−∞

x[n]y[n]

Recall that the inner product of two vectors u⃗, v⃗ ∈ Rn is

⟨⃗u, v⃗⟩=
n

∑
i=1

uivi

which is very similar to the cross correlation at 0. However, there is one difference: the summation in the
cross correlation equation goes from −∞ to ∞. This means that we will need to know x[n] and y[n] for all
n, even if x⃗, y⃗ were only defined over a finite range. We make the assumption that x[n] and y[n] are 0 for
any n that they are not defined for. (This assumption is what differentiates a linear cross-correlation from
a circular cross-correlation, which we will introduce in the next section.)

Consider two vectors, s⃗1 ∈ R3 and s⃗2 ∈ R2:

s⃗1 =

1
3
2

 s⃗2 =

[
2
1

]

We cannot calculate their inner product because they are not the same dimension, but we can calculate
corr⃗s1 (⃗s2)[0] because we assume that the smaller vector has another zero at the end, making them the same
size.

corr⃗s1 (⃗s2)[0] = (1)(2)+(3)(1)+(2)(0) = 5

Now that we can find the cross correlation at 0, how do we find it at other k values? Looking back at the
definition in Eq. (4), we see that y[i− k] has all of the same values as y[i], but shifted to the right (or down)
by k. Therefore, to find corr⃗x(⃗y)[k], we shift the second signal, y⃗, to the right by k units, then take the inner
product between x⃗ and the shifted version of y⃗. As before, we assume that any values not defined in either
vector are 0.

The figure below summarizes the linear cross correlation for the example vectors s⃗1 and s⃗2 defined above.
Note that both signals have been padded with zeros on either side. Each value of the cross-correlation is
found by shifting s⃗2 (right for positive values, left for negative values) and then taking the inner product.
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Eventually, the two signals no longer overlap (for example, when s⃗2 is shifted by -2 units). When the signals
don’t overlap, the inner product will be 0, since every non-zero element will be multiplied by zero. At this
point we don’t need to calculate more of the cross correlation. If we write all of the non-zero values in a
vector, we get the following in this example:

corr⃗s1 (⃗s2) =


1
5
8
4

 .

This is the same as what you get in python with numpy.correlate([1, 3, 2], [2, 1], ‘full’).
The ‘full’ tag tells python to return all of the non-zero values. However, python doesn’t tell you which out-
put corresponds to 0 shift of the signal – you must calculate that yourself based on the length of the input
signals.

22.4.2 Correlation Interpretation
Now that we’ve introduced cross-correlation, what does it mean? We can think of the cross-correlation as a
sliding inner product. Recall that the inner product can be written as

⟨⃗x, y⃗⟩= ∥⃗x∥∥⃗y∥cosθ
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where θ is the angle between the vectors. If θ is low, it indicates that the vectors are pointed in almost the
same direction, meaning the vectors are very similar. As θ approaches 90◦, the vector point increasingly
different directions, indicating that the vector are not similar.

Therefore, when the inner product is large, x⃗ and y⃗ are more similar, and when it’s small, they are more
different. The cross-correlation checks the inner product at all relative shifts between the signals, so it tells
us how similar two signals are at every shift.

22.4.3 Correlation Properties
It is important to note that correlation is not commutative:

corr⃗x(⃗y) ̸= corr⃗y(⃗x)

We can think of circular correlation as a special case of linear correlation, so it is not commutative either:

circcorr(⃗x, y⃗) ̸= circcorr(⃗y, x⃗)

In future classes, you’ll learn about the convolution which is an operation similar to correlation but commu-
tative. (A mathematical structure in machine learning called a convolutional neural network takes its name
from this operation.)

We can take a correlation between a signal and itself. This is call an autocorrelation. The autocorrelation
tells us how similar a signal is to all shifts of itself.

22.5 Modeling the positioning problem
Now that we’ve defined cross-correlation, we are ready to use it to solve our positioning problem. Recall
that we have several beacons that are sending signals that our receiver picks up. We want to determine the
distance from the receiver to each beacon. Let’s start with the case where there is a single beacon a distance
d away from the receiver.

The beacon sends a periodic signal using radio waves (or something else that travels through air, such as
light or sound). Since radio waves travel at a finite velocity, there is a delay between the when the beacon
sends the signal and when the receiver sees it. For example, in the diagram below, the value marked in red
is sent at t = 0 and received at t = 2, indicating that there is a 2 second delay (assuming there is a sample
ever second).

EECS 16A, Fall 2023, Note 22 6



Our goal is to determine this time delay, τ . Then we can use the velocity of radio waves (or light, or sound),
v, to determine the distance: d = vτ .

We’ll assume that the beacon is sending a known periodic signal, s⃗, with period N. The receiver will measure
the first N samples. We can model the receiver signal, r⃗ as

r⃗ = α s⃗(τ)

r[k] = α s[k− τ]
(5)

where α is a scalar that accounts for beacon’s signal becoming weaker as it travels. τ is the time delay that
we would like to measure.

We have N equations (from each of our N measurements) and two unknowns α and τ . However, τ is related
to r⃗ and s⃗ in a nonlinear way, so we cannot use our standard linear algebra to solve this problem. What can
we do?

Recall that the cross-correlation tells us how much of a signal is present at every shift. Therefore, we can
estimate the true shift by finding the index of the cross-correlation with the largest value!

Let’s walk through this with the example above. We know that the beacon is sending the following signal, s⃗
of length N = 4 that repeats periodically. We measure the first N samples at the receiver to get r⃗.

s⃗ =


2
4
6
4

 r⃗ =


3
2
1
2


We’ll try taking the inner product of our received signal with every possible circular shift of our known
beacon signal.

circcorr(⃗r, s⃗) =


〈⃗
r, s⃗(0)

〉〈⃗
r, s⃗(1)

〉〈⃗
r, s⃗(2)

〉〈⃗
r, s⃗(3)

〉


=


− s⃗(0)

T −
− s⃗(1)

T −
− s⃗(2)

T −
− s⃗(3)

T −


|r⃗
|



=


2 4 6 4
4 2 4 6
6 4 2 4
4 6 4 2




3
2
1
2



=


28
32
36
32


The maximum is 36 at k = 2 which indicates that there is a two sample delay between s⃗ and r⃗ (remember,
we the first value is at index 0 because there is no shift). Looking back at the figure above, we can see that
this is true shift.
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We can write this process for estimating τ using optimization notation:

τ̂ = argmax
k

(circcorr(⃗r, s⃗)[k])

This means that our estimate of τ (denoted τ̂) is the value of k that makes circcorr(⃗r, s⃗)[k] largest. This style
of notation is very common in optimization and machine learning.

22.6 Other definitions of Cross-Correlation [optional]
The following definitions are very similar to cross-correlation in spirit, but have some small differences in
their actual computation. They are all out of scope for this course, but are presented here just if you’re
interested, or if you see them appear in materials from older versions of this course.

22.6.1 Circular Cross-Correlation
A circular cross-correlation with period N is defined as follows:

circcorr(⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[(i− k)N ] (6)

There’s some new notation here: (i)N is another way of writing “i mod N.” (i)N is the remainder when i is
divided by N. For example, if N = 3,

(0)N = 0 mod 3 = 0 (1)N = 1 mod 3 = 1 (2)N = 2 mod 3 = 2

(3)N = 3 mod 3 = 0 (4)N = 4 mod 3 = 1 (5)N = 5 mod 3 = 2

This notation allows us to count in a circular way: we count from 0 to N −1 and then repeat, starting at 0.

Now let’s go back to our definition of circular cross-correlation. Once again, we’ll start by considering when
k = 0:

circcorr(⃗x, y⃗)[0] =
N−1

∑
i=0

x[i] y[(i)N ]

We are able to remove the N subscript in this case because i is always less than N due to the bounds on the
summation:

circcorr(⃗x, y⃗)[0] =
N−1

∑
i=0

x[i] y[i]

Now this is exactly the inner product of the x⃗ and y⃗ if they are both length N. If either vector is longer than
N, then it is the inner product of the first N elements. However, this case is less useful since some of the
elements are never used in the computation. Therefore, for circular correlations we restrict ourselves to the
case where x⃗ and y⃗ are both length N.

How about when k is not 0? Now, we take the inner product of x⃗ and a version of y⃗ that is circularly shifted
by k. We’ll denote this circularly shifted vector as y⃗(k). For example:

y⃗ = y⃗(0) =


1
2
3
4

 y⃗(1) =


4
1
2
3

 y⃗(2) =


3
4
1
2
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Using this notation
circcorr(⃗x, y⃗)[k] =

〈⃗
x, y⃗(k)

〉
= y⃗(k)

T
x⃗

We can write all of the values of the correlation in vector format:

circcorr(⃗x, y⃗) =


〈⃗
x, y⃗(0)

〉〈⃗
x, y⃗(1)

〉
...〈⃗

x, y⃗(N−1)
〉


Then we expand this into matrix-vector multiplication

circcorr(⃗x, y⃗) =


− y⃗(0)

T −
− y⃗(2)

T −
...

− y⃗(N−1)T −


 |

x⃗
|



=


y[0] y[1] . . . y[N −2] y[N −1]

y[N −1] y[0] . . . y[N −3] y[N −2]
...

...
y[2] y[3] . . . y[0] y[1]
y[1] y[2] . . . y[N −1] y[0]


︸ ︷︷ ︸

Cy⃗

 |
x⃗
|



= Cy⃗ x⃗

Here, C⃗y is a matrix containing all of the shifted versions of y⃗ in its rows. This is called a circulant matrix,
and is another way to write a circular correlation.

Cy⃗ =


y[0] y[1] . . . y[N −2] y[N −1]

y[N −1] y[0] . . . y[N −3] y[N −2]
...

...
y[2] y[3] . . . y[0] y[1]
y[1] y[2] . . . y[N −1] y[0]



22.6.2 Linear, Circular, and Periodic Correlations

In order to understand the relationship between linear and circular correlations, we will introduce one more
correlation: the linear correlation for periodic signals, sometimes called the periodic correlation. Before
defining it, we’ll motivate it by thinking about when linear and circular correlations (defined above) are
equivalent.

Recall that a linear correlation is

corr⃗x(⃗y)[k] =
∞

∑
i=−∞

x[i] y[i− k]
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and a circular correlation is

circcorr(⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[(i− k)N ]

In what case are they the same? If we assume that the second input, y⃗, is repeated indefinitely, then a circular
shift of y⃗ is the same as a linear shift. (If we circularly shift y⃗, the end of the vector appears at the beginning.
This is exactly what happens if there is another copy of y⃗ before the initial copy.) However, if we plug
infinite repeating signals into the linear correction equation, we’ll get infinity because the bounds on the
sum are from from −∞ to ∞.

Therefore, we can think of a circular correlation as a subset of a linear correlation where the signals are
periodic with period N (i.e. repeating ever N samples) and we sum only over one period. We call this the
linear correlation for periodic signals or periodic correlation which is defined as

corrN (⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[i− k]

We distinguish this from the linear correlation with the N subscript. (Linear correlations are denoted “corr”
and periodic correlations are denoted “corrN”). When we calculate corrN (⃗x, y⃗) we assume that x⃗ and y⃗ are
periodic with period N.

Now let’s examine the relationship between the three correlations we’ve introduced:

22.6.3 Circular Correlation vs. Periodic Correlation

Circular Corrlation: Periodic Correlation:

circcorr(⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[(i− k)N ] corrN (⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[i− k]

In the circular correlation, when we shift y⃗, we shift it in a circular fashion – i.e. elements that shift off the
end of the signal reappear at the beginning. This is mathematically described by the term y[(i− k)N ] in the
equation above (recall that the subscript means mod N). Note that we are not making any assumptions about
the signal when we do this. Rather, we define the shift to be circular.

In contrast, in the periodic correlation we assume that the signal is periodic with period N and we shift y⃗ in
a linear fashion. However, shifting a periodic signal linearly is the same as shifting a non-periodic signal in
circular way! As we shift periodic y⃗ to the right, a copy of y⃗ appears on the left since the signal is repeated.
This is exactly the same as if we circularly shifted y⃗.

In conclusion, these two correlations yield the exact same result! We can conceptually think of the
circular correlation as shifting the signal in a circle, and we can think of the period correlation as shifting a
repeating signal. However, since they give the same result, we can also interpret the the circular correlation
as shifting a repeated signal (and vice versa). For positioning we will use periodic signals so periodic
correlations or equivalently, circular correlations, are the natural operations to use.
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22.6.4 Linear Correlation vs. Periodic Correlation

Linear Correlation: Periodic Correlation:

corr⃗x(⃗y)[k] =
∞

∑
i=−∞

x[i] y[i− k] corrN (⃗x, y⃗)[k] =
N−1

∑
i=0

x[i] y[i− k]

In both linear and periodic correlations, we shift y⃗ in a linear fashion. However, in a linear correlation, we
assume that all of the values outside of the defined range are zero. In a periodic correlation, we assume that
the signal is repeating with period N.

In general, our signals are not infinite length. Therefore, when we assume zeros outside defined range (as
in linear correlation), the sum is generally finite. However, if we assume a repeating signal (as in periodic
correlation) the sum could be infinite, which is a problem. Therefore, we only define the periodic correlation
over one period from 0 to N −1.

In conclusion, a periodic correlation (or equivalently, a circular correlation – see above section) is the same
as a linear correlation where the signal is periodic and we sum over only one period.

22.7 Practice Problems
These practice problems are also available in an interactive form on the course website
(http://ee16a.com/hw-practice#/). Note that some of them may reference definitions from the
optional section above, and so are out of scope of the course.

1. True or False: We can always uniquely determine our position in an n-dimensional world using n+1
beacons.

2. Assume that you receive a shifted signal r⃗ and you correlate it with the original periodic signal s⃗,

such that corr⃗s(⃗r) =



−32
−32
16
16
96
24

. What would you estimate as the sample delay between you and the

transmitter?

3. True or False: ∥Cx⃗⃗y∥=
∥∥Cy⃗⃗x

∥∥.

4. True or False: The projection of y⃗ onto v⃗ is the same as the projection of y⃗ onto c⃗v whenever c ̸= 0.
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