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EECS 16A Designing Information Devices and Systems I
Spring 2023 Final

Final Solution

General Notes
• This exam has a combination of multiple choice questions and fill in the blank.

• This exam will be partially autograded. You must adhere to the following format to receive full credit:

– For fill in the blank questions, legibly write your final answer entirely in the provided boxes.

– For questions with circular bubbles, select exactly one choice, by filling the bubble  .
# You must choose either this option. # Or this one, but not both!

– For questions with square boxes, you may select multiple choices, by filling the squares ■.
2 You could select this choice. 2 You could select this one too!

1. HONOR CODE
Please read the following statements of the honor code, and sign your name (you don’t need to copy it).

I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

• I have read the instructions for this exam. I understand them and will follow them.

• All of the work submitted here is my original work.

• I did not reference any sources other than my unlimited printed resources.

• I did not collaborate with any other human being on this exam.

Tell us about something you are looking forward to this summer! (1 point) All answers will be awarded
full credit.
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2. Circuit Networks (3 points)

For each part, find the equivalent resistance or capacitance between terminals A and B.

You may use the ∥ operator in your final expressions.

(a) (1 point)

R4

R3

R2

R1

B

A

Req =

Solution:

Req = R3 ∥ (R1 +R2 +R4)

(b) (1 point)

B

C3

C1C2

A

C4

Ceq =

Solution:

Ceq =C1 ∥C2 ∥ (C3 +C4)

(c) (1 point)

C1

C2

C3

A B

Ceq =

Solution:

Ceq =C2 +(C1 ∥C3)
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3. Mystery Circuit Voltage Divider (6 points)

You are given a “mystery circuit” in a box with a part sticking out, as in the diagram below.

a

1Ω

b

1Ω

c

1Ω

d

Mystery Circuit

(a) (2 points) The voltage at node a is measured to be 6V. Find the voltages at nodes b and c.

Node b voltage: V Node c voltage: V

Solution:
We can use the voltage divider equation twice to find the node voltages
At node b:

ub =
1Ω+1Ω

1Ω+1Ω+1Ω
6V =

2
3
·6V = 4V

And at node c:

uc =
1Ω

1Ω+1Ω+1Ω
6V =

1
3
·6V = 2V
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(b) (2 points) Imagine there’s another part of the circuit added on the left, with differently valued resistors
as shown.

h

3Ω

g

2Ω

f

1Ω

e a

1Ω

b

1Ω

c

1Ω

d

Mystery Circuit

Given that both node a and node e are measured to be 6V, compare the node voltages below.
Use either: >, =, or <.

i. e = a

ii. f b

iii. g c

iv. h d

Solution: Using the results from part (a) and reusing the voltage divider formula for nodes f and g:
At node f:

uf =
2Ω+3Ω

1Ω+2Ω+3Ω
6V =

5
6
·6V = 5V

And at node g:

ug =
3Ω

1Ω+2Ω+3Ω
6V =

3
6
·6V = 3V

The node voltages at h and d are both zero since they are both tied to ground.
Then comparisons between node voltages are

i. e = a

ii. f > b

iii. g > c

iv. h = d
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(c) (2 points) Now the resistors on the left side are all adjusted to be equal to 111ΩΩΩ, and an additional
resistor R1 = 0.5Ω is connected between nodes b and f , and resistor R2 = 2Ω is connected between
nodes c and g. You again measure the voltage at both node a and node e to be 6V.

h

111ΩΩΩ

g

111ΩΩΩ

f

111ΩΩΩ

e a

1Ω

b

1Ω

c

1Ω

d

Mystery Circuit

R2

iR2

R1

iR1

i. What is the current iR1 through resistor R1?

iR1 = A

Solution:
Since the node voltages at e and a are equal and the resistive ladder on the left matches the
resistive ladder on the right, the node voltages at f and b are equal. Thus, there is no current
flowing through the resistor R1

iR1 =
uf −ub

R1
=

0V
R1

= 0A

ii. Select the correct statement regarding the relative values of iR1 and iR2.

# iR1 > iR2 # iR1 = iR2 # iR1 < iR2

Solution:
Using a similar justification as iR1 in part (c).i., the node voltages at g and c are equal, thus
iR2 = 0A.
Consequently, iR1 = iR2 = 0A.
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4. Least Squares in Pictures (9 points)

(a) (1 point) Consider a 3×2 matrix A with linearly independent columns a⃗1, a⃗2 ∈ R3. Below we plot a⃗1
and a⃗2 as well as the plane that they both lie in (the dashed lines are the coordinate axes).

a⃗1

a⃗2

Select all of the following options which describe the plane that contains a⃗1 and a⃗2 (the shaded region):

2■ Col(A), the columnspace of A.

2 Null(A), the nullspace of A.

2 Det(A), the determinant of A.

2■ {A⃗x | x⃗ ∈ R2}.

Solution:
Recall that you can write matrix-vector multiplication as a linear combination of the columns of the
matrix: A⃗x = ∑

n
i=1 xi⃗ai. Therefore, the possible values of A⃗x for different x⃗ (the last option) are exactly

the span of the columns of A, also known as the column space of A (the first option). In this case,
because a⃗1 and a⃗2 are linearly independent, they span a full 2D plane in R3, which is the plane shown
in the picture.
In the context of least squares, this plane represents the part of R3 that is “reachable” by A. There is
no x̂ you can choose to create an Ax̂ outside of this plane.
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(b) (2 points) Now let’s take our setup from part (a) and add an additional vector b⃗ ∈ R3 to the diagram.
For each of the following choices of b⃗, select whether the equation A⃗x = b⃗ has an exact solution x⃗.
Solution: The system of linear equations A⃗x = b⃗ has an exact solution if and only if b⃗ ∈ Col(A).
Geometrically, that means b⃗ must lie in the plane of a⃗1 and a⃗2.

(i). b⃗ is not in the plane

a⃗1

a⃗2

b⃗

# Yes, there exists an x⃗ such that A⃗x = b⃗.

# No, there does not exist an x⃗ such that A⃗x = b⃗.

(ii). b⃗ is in the plane

a⃗1

a⃗2
b⃗

# Yes, there exists an x⃗ such that A⃗x = b⃗.

# No, there does not exist an x⃗ such that A⃗x = b⃗.
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(c) (3 points) Now let’s take our setup from the previous parts and add one more vector A ˆ⃗x. Determine in
each of the following pictures whether the ˆ⃗x from the given A ˆ⃗x vector is the least squares solution to
A⃗x ≈ b⃗ or not.
Solution: Geometrically, the least squares solution to A⃗x ≈ b⃗ is the orthogonal projection of b⃗ onto
the column space of A because that is the choice of Ax̂ that minimizes the error between Ax̂ and b⃗.
This corresponds to the picture in part (i).

(i). b⃗ is not in the plane. A ˆ⃗x is in the plane.

a⃗1

a⃗2

b⃗

A ˆ⃗x

# Yes, ˆ⃗x is the least squares solution.

# No, ˆ⃗x is not the least squares solution.

(ii). b⃗ is in the plane. A ˆ⃗x is not in the plane.

a⃗1

a⃗2

A ˆ⃗x

b⃗

# Yes, ˆ⃗x is the least squares solution.

# No, ˆ⃗x is not the least squares solution.

(iii). b⃗ is in the plane. A ˆ⃗x is in the plane and ends at the tip of its arrow (not all the way to the tip of b⃗).

a⃗1

a⃗2

b⃗A ˆ⃗x
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# Yes, ˆ⃗x is the least squares solution.

# No, ˆ⃗x is not the least squares solution.

Solution: When b⃗ happens to be in the plane that is the column space of A, there is an exact
solution where Ax̂ = b⃗ that has zero error. So geometrically, Ax̂ and b⃗ should be the same vector.

(d) (3 points) Suppose that you have found the least squares solution ˆ⃗x to the equation A⃗x ≈ b⃗. Which of
the following statements are always true for any A and b⃗?

2 b⃗ is orthogonal to ˆ⃗x

2 b⃗ is orthogonal to A ˆ⃗x

2■ b⃗−A ˆ⃗x is orthogonal to a⃗1

2■ b⃗−A ˆ⃗x is orthogonal to every vector y⃗ ∈ Col(A)

2 A ˆ⃗x is orthogonal to a⃗2

2 A ˆ⃗x is parallel or anti-parallel to b⃗

Solution: The orthogonality principle of least squares states that the error of the optimal least squares
estimate b⃗−A ˆ⃗x is orthogonal to everything in the space of possible estimates A ˆ⃗x, i.e. the column space
of A.
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5. Battleships (12 points)

You are working on a top-secret project to predict the distance you are from enemy ships in the ocean. You
want to build a model that makes these predictions based on a variety of factors, such as water temperature
and currents. In particular, you want to design a linear function by choosing the best values of c1,c2:

d = c1m1 + c2m2

where m1,m2 correspond to measurements of temperature and currents, and d represents your prediction of
the enemy ship’s distance.

(a) (3 points) You begin by taking the following measurements:

m1 m2 d
0 1 0
1 1 1
2 4 -2

You want to use this data to solve for the best parameters of your model. Find A and b⃗ such that your

problem is in the form A⃗x = b⃗, where x⃗ =
[

c1
c2

]
, the parameters of the model to solve for.

A = b⃗ =

Solution: A =

0 1
1 1
2 4

 b⃗ =

 0
1
−2


(b) (5 points) Suppose your colleague took their own measurements, and came up with the following A

matrix and b⃗ vector.

A =

1 0
1 0
0 1



b⃗ =

2
1
3


Explicitly solve for the least-squares solution ˆ⃗x.
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ˆ⃗x =

Solution:

ˆ⃗x = (AT A)−1AT b⃗

= (

[
1 1 0
0 0 1

]1 0
1 0
0 1

)−1
[

1 1 0
0 0 1

]2
1
3


= (

[
2 0
0 1

]
)−1

[
3
3

]
=

[1
2 0
0 1

][
3
3

]
=

[3
2
3

]
Alternatively, because the columns of A are orthogonal, you can use the result from Discussion 14A
Problem 4(b) to just project b⃗ onto each column of A.

(c) (4 points) Your boss attempts to calculate the least squares solution on their own and arrives at

ˆ⃗x =
[

2
2

]
Compute the squared error that this model achieves on the data, which is repeated below for your
convenience.

A =

1 0
1 0
0 1

 b⃗ =

2
1
3


Hint: The squared error is defined as the squared norm of the error vector.

squared error =
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Solution:

b⃗−A ˆ⃗x =

2
1
3

−

1 0
1 0
0 1

[
2
2

]

=

 0
−1
1


||⃗b−A ˆ⃗x||2 = 0+(−1)2 +12 = 2
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6. 16Aliens (12 points)

Shuming is stranded on an alien planet and can only receive sound signals from distant signal towers. Can
you help him find his way back to the launchpad?

(a) (2 points) One of the towers transmits the following signal:

0 1 2 3 4 5 6 7
0

1

2

3

n

tr
an

sm
itt

ed

Shuming receives the following noisy signal:

0 1 2 3 4 5 6 7
0

1

2

3

n

re
ce

iv
ed

How long did it take for the tower’s transmission to reach Shuming? (Assume that the units of n are
seconds.)

seconds

Solution: Looking for where the transmitted signal matches with the received signal, it matches best
starting at n = 3 seconds, so it took 3 seconds to arrive.

EECS 16A, Spring 2023, Final 13



14

(b) (2 points) Shuming received another signal!

0 1 2 3 4 5 6 7
0

1

2

3

n
tr

an
sm

itt
ed

0 1 2 3 4 5 6 7
0

1

2

3

n

ne
w

si
gn

al

Calculate the cross-correlation between the new signal and the same transmitted signal delayed by 1,
i.e. corrnew signal(transmitted)[1].

corrnew signal(transmitted)[1] =

Note: corr⃗x(⃗y)[k] = crosscorr(⃗x, y⃗)[k].
Solution: Shift the transmitted signal to the right by 1. Then compute the inner product between the
two signals: crosscorr(new signal, transmitted)[1] = 1 ·3+2 ·2 = 7

(c) (1 point) Shuming receives another signal, and detects a match with the tower’s signal with a time
delay of n = 20 seconds. Given that the speed of sound is 350 meters/second, how far away is the
signal tower from Shuming?

meters

Solution: distance = speed * time: 20 s * (350m/s) = 7000 m

(d) (3 points) After performing cross-correlation on the signals, Shuming obtains the following absolute
distances between him and each of the towers. Using the provided distances d and tower positions
(x,y), write the corresponding nonlinear equations for each tower that we could use to solve for
Shuming’s location. Use rx and ry as the variables that we would solve for Shuming’s location.

Tower (x,y) d
0 (0,0) 1
1 (3,1) 3
2 (-2,1) 2
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Solution: We apply the distance equation to each of the three towers:

∥⃗r− a⃗i∥2 = (rx − xi)
2 +(ry − yi)

2 = d2
i

r2
x + r2

y = 12

(rx −3)2 +(ry −1)2 = 32

(rx +2)2 +(ry −1)2 = 22

(e) (4 points) Lastly, linearize your nonlinear equations, and write the final system of linear equations in
matrix-vector form. You don’t need to solve the system for rx and ry.
Solution: Starting with the three equations from the previous part:

r2
x + r2

y = 1 (1)

r2
x −6rx +9+ r2

y −2ry +1 = 9 (2)

r2
x +4rx +4+ r2

y −2ry +1 = 4 (3)

We linearize by subtracting equations from each other and getting a system of two linear equations.
Here, we show subtracting the second and third tower’s equations from the first, but you can choose
other subtractions.

(2)− (1) : −6rx +9−2ry +1 = 8

−6rx −2ry =−2

(3)− (1) : 4rx +4−2ry +1 = 3

4rx −2ry =−2

We can then put this into matrix-vector form:

A⃗r = b⃗[
−6 −2
4 −2

][
rx

ry

]
=

[
−2
−2

]
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7. Negative Feedback (8 points)

Which of the following op-amp circuits are in negative feedback?

−

+
R1

−
+ Vin

R2

+

−
Vout

2

−

+Iin

R1

+

−
Vout

2■

−

+

R1

−
+ Vin

R2

+

−
Vout

2

−

+

−
+ Vin −

+ −Vx

R1

R2

+

−
Vx

+

−

Vout

2■

EECS 16A, Spring 2023, Final 16



17

Solution:

When testing for negative feedback, we need to zero out all independent sources. Let’s analyze the circuits
where we replace voltage sources with short circuits and current sources with open circuits.

−

+

u+

R1

R2

+

−
Vout

We see that u+ is the middle node of a voltage divider. If Vout increases, so will u+ which in turn increases
the output of the op-amp. Since an increase in Vout causes Vout to increase even more, this is an example of
positive feedback, not negative feedback.

−

+

u−

R1

+

−
Vout

No current flows through R1 which means that there is no voltage drop across of it and thus u− = Vout. An
increase to Vout will increase u− which in turn decreases the output of the op-amp. Since an increase in Vout
causes Vout to decrease, this is an example of negative feedback.

−

+

u−R1

R2

+

−
Vout

Again, no current flows through R1 which means that u− = 0V. Thus any changes to Vout does not affect the
inputs of the op-amp. This op-amp is not in feedback!
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−

+
u+

−
+ −Vx

R1

R2

+

−
Vx

+

−

Vout

Remember that we must leave the dependent source on! Here we notice that Vx is the middle node of a
voltage divider. If Vout increases, so will Vx. The increase in Vx affects the dependent source which lowers
the voltage at u+. Lowering the positive input of the op-amp will decrease the op-amp output. Since an
increase in Vout causes Vout to decrease, this is an example of negative feedback.
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8. What’s the Equivalent? (12 points)

(a) (4 points) Solve for the values of Ieq,Req such that the I −V characteristics between terminals a and b
are the same in both circuits. Express your answers in terms of R1,R2,VS.

−
+VS

R1

R2

b

a
Ieq Req

b

a

Ieq = Req =

Solution:
The circuit on the right is the Norton equivalent circuit! Thus if we find Rth and Ino for the circuit on
the left, we know that Ieq = Ino and Req = Rth.

Let’s begin by finding Ino which is found by shorting nodes a to b and calculating the current flowing
through the short.

−
+VS

R1

R2

b

a

Ino

Since a and b are shorted, Va =Vb = 0V and no current will flow through R2. Thus

Ino = IR1 =
VS

R1
.
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Now let’s find Rth by turning off all independent sources and computing the equivalent resitance be-
tween the two terminals.

R1

R2

b

a

Between nodes a and b, we can see that the two resistors are in parallel. Thus

Rth = R1 ∥ R2.

Thus our equivalents are as follows:

Ieq = Ino =
VS

R1
Req = Rth = R1 ∥ R2.
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(b) (8 points) Consider a mystery circuit. You decide to connect a voltage source and two resistors to its
terminals a and b as shown. You are told that the Thévenin equivalent circuit for the mystery circuit
between nodes a and b has Vth = 3V and Rth = 1Ω.

b

a

3Ω

− +
Vout

−
+ 6V

2Ω

Mystery circuit

i. What is the voltage Vout across the 3Ω resistor?

Vout = V

Solution:
Connect the Thévenin equivalent circuit for the mystery circuit:

1Ω I

−
+3V

b

a

3Ω

− +
Vout

I

−
+ 6V

2Ω
I

Mystery Circuit

We notice that all of our circuit elements are in a loop so the current thorugh each element must
be the same! Let’s label thi current I according to passive sign convention with the labeled voltage
Vout.

Apply KVL in the counter-clockwise direction starting in the bottom left corner using Ohm’s law
on each resistor:

0 = 3V− I(1Ω)− I(2Ω)−6V− I(3Ω).

Solving for I yields

I =
3V−6V

1Ω+2Ω+3Ω
=−0.5A

Now we can use Ohm’s law again to find the voltage Vout across the 3Ω resistor.

Vout = I · (3Ω) = (−0.5A)(3Ω) =−1.5V
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ii. What is the power Pout dissipated by the 3Ω resistor?

Pout = W

Solution:
We know that power is calculated using P = IV . For a resistor, we can use Ohm’s law to rewrite

Pout =
V 2

out

R
=

(−1.5V)2

3Ω
= 0.75W.
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9. Noisy Imaging Revisited (12 points)

(a) (2 points) Oski decides to attend EECS 16A labs! He is given 4 different 2x2 masks for imaging:

Mask 1 Mask 2 Mask 3 Mask 4

What is the masking matrix that corresponds to the given masks? (Hint: remember that each row of a
masking matrix represents a mask.)
Draw the masking matrix by filling in the squares of the grid below (draw an X in the squares that
should be black/zero):
Solution: The resultant masking matrix looks like this:

(b) (2 points) Could we use the masking matrix in the previous part to uniquely solve for an image from
sensor data? Remember that black squares represent zeros and white squares represent ones.
# Yes # No
Briefly justify your answer.
Solution: No, the masking matrix is not invertible - there is a column (and a row) of zeros. Another
way to see this is that the intensity of the fourth pixel is never measured.
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(c) (4 points) Recall that we modeled our noisy imaging system as s⃗ = H⃗i+ ω⃗ , where s⃗ is the measure-
ments, H is the masking matrix, i⃗ is the true scene we want to reconstruct, and ω⃗ is the noise vector.
To reconstruct our image, we multiplied both sides of the equation by H−1, yielding i⃗est = i⃗+H−1ω⃗ .
The term H−1ω⃗ represents the effect of the noise on i⃗est . In order to minimize H−1ω⃗ , is it better for
the eigenvalues of H to be small or large?
# Small # Large
Justify your answer. You may assume that the eigenvectors of H span Rn, where ω⃗ ∈ Rn.
Solution: We prefer large eigenvalues of H. If the eigenvectors of H span Rn, we can write ω⃗ =

∑
n
i=1 αi⃗vi for some real αi, where v⃗i are eigenvectors of H. We want to minimize H−1ω⃗ , which means

minimizing H−1
∑

n
i=1 αi⃗vi = ∑

n
i=1

1
λi

αi⃗vi. To minimize this quantity, we must therefore maximize λi.

(d) (2 points) Another way to counteract the effect of noise is to collect more measurements and take
advantage of redundancy using least squares, as you’ve learned in Module 3. In this case, our new
masking matrix H would be tall (more rows than columns) instead of square, so we cannot invert it
directly. Let’s analyze the effect of noise in this scenario.
First, consider the case when there is no noise in the measurement: ω⃗ = 0⃗ and s⃗ = H⃗i. Using least
squares, write a mathematical formula for the reconstructed image i⃗clean in terms of H and s⃗.
Solution: Our system without noise is s⃗ = H⃗i. Using our normal least squares formulation, we get
i⃗clean = (HT H)−1HT s⃗.

(e) (2 points) Next, consider the case when there is noise: ω⃗ ̸= 0⃗ and s⃗= H⃗i+ω⃗ . To see the effect of noise,
use least squares again to write a mathematical formula for the reconstructed image i⃗noisy in terms of
H, ω⃗ , and i⃗clean from the previous part.
Solution: Again using the least squares formula, we get i⃗noisy = (HT H)−1HT (⃗s− ω⃗). This reduces to
i⃗clean − (HT H)−1HT ω⃗ .
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10. Charge Pumps (15 points)
Consider the circuit described below:

C1

I1

g1V1

C2

I2
g2V2

+

−

V1

+

−

V2

Two capacitors C1 and C2 are connected by two dependent current sources which control the flow of current
between the capacitors. The charges on the capacitors can be modeled as discrete time signals Q1[t] and
Q2[t] that are sampled every ∆t seconds.

(a) (4 points) We are given that Q1[t],Q2[t] change in time according to the following equations:

Q1[t +1] =
(

1− g1∆t
C1

)
Q1[t]+

(
g2∆t
C2

)
Q2[t]

Q2[t +1] =
(

g1∆t
C1

)
Q1[t]+

(
1− g2∆t

C2

)
Q2[t]

Let us define the vector

q⃗[t] =
[

Q1[t]
Q2[t]

]
that represents the charges on both capacitors at time step t.

i. Assuming C1 = 10µF, C2 = 20µF, g1 = 5A ·V−1, g2 = 4A ·V−1, ∆t = 1µs, find the state transition
matrix S where q⃗[t +1] = S⃗q[t]. Note: 1F = 1A · s ·V−1.
Solution:
Let’s begin by computing

g1∆t
C1

=
5A ·V−1 ·1µs

10µF
=

1
2

g2∆t
C2

=
4A ·V−1 ·1µs

20µF
=

1
5

which allows us to rewrite our given state equations as

Q1[t +1] =
1
2

Q1[t]+
1
5

Q2[t]

Q2[t +1] =
1
2

Q1[t]+
4
5

Q2[t].

Now converting this system of linear equations into matrix form, we have[
Q1[t +1]
Q2[t +1]

]
=

[
1/2 1/5
1/2 4/5

][
Q1[t]
Q2[t]

]
=⇒ S =

[
1/2 1/5
1/2 4/5

]
.
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ii. Fill in the state transition diagram that corresponds to S.

Q1 Q2

Solution:

Q1 Q2
1
2

1
2

1
5

4
5

iii. Is this system conservative?

# Yes # No
Solution:
A transition matrix is conservative if it’s columns sum to one. For our matrix

1
2
+

1
2
=

1
5
+

4
5
= 1

so our system is conservative.

(b) (7 points) Let’s assume we found the following state transition matrix for the charge pump circuit:

S =

[
1/2 1/4
1/2 3/4

]
Find the eigenvalues and corresponding eigenvectors of S.

λ1 = v⃗1 = λ2 = v⃗2 =

Solution:
We begin by solving for the eigenvalues of our system by solving the characteristic equation of S.

det(S−λ I) = 0

det
[1

2 −λ
1
4

1
2

3
4 −λ

]
= 0(

1
2
−λ

)(
3
4
−λ

)
−
(

1
4

)(
1
2

)
= 0

3
8
− 5

4
λ +λ

2 − 1
8
= 0

λ
2 − 5

4
λ +

1
4
= 0

(λ −1)
(

λ − 1
4

)
= 0
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which gives us

λ1 = 1, λ2 =
1
4
.

Let’s now solve for eigenvector v⃗1 that corresponds to λ1 = 1. We know that

Sv⃗1 = λ1v⃗1

which we can rearrange as

Sv⃗1 −λ1Iv⃗1 = 0

(S−λ1I) v⃗1 = 0[
−1

2
1
4

1
2 −1

4

]
v⃗1 = 0.

We can solve this matrix equation (either using gaussian elimination or by inspection) and find that

v⃗1 =

[
1
2

]
.

We can repeat this process to solve for eigenvector v⃗2 that corresponds to λ2 = 1/4.

Sv⃗2 = λ2v⃗2

Sv⃗2 −λ2Iv⃗2 = 0

(S−λ2I) v⃗2 = 0[1
4

1
4

1
2

1
2

]
v⃗2 = 0.

which has solution

v⃗2 =

[
1
−1

]
.

(c) (4 points) For the next parts, assume that the charge pump state transition matrix is

S =

[
2/5 1/5
3/5 4/5

]
which has eigenvalue, eigenvector pairs:

λ1 = 1, v1 =

[
1
3

]
λ2 =

1
5
, v2 =

[
1
−1

]
i. If we start in the state

q⃗[0] = α v⃗1 +β v⃗2

where α ̸= 0,β ̸= 0, does limt→∞ q⃗[t] converge? Explain.

# Yes # No
Solution:
We know that q⃗[t +1] = S⃗q[t], so we can write

q⃗[t] = St q⃗[0] = St(α v⃗1 +β v⃗2) = αSt v⃗1 +βSt v⃗2.
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Because v⃗1, v⃗2 are eigenvectors, we can rewrite

q⃗[t] = αSt v⃗1 +βSt v⃗2 = αλ
t
1v⃗1 +βλ

t
2v⃗2.

Now let’s consider
lim
t→∞

q⃗[t] = lim
t→∞

(
αλ

t
1v⃗1 +βλ

t
2v⃗2

)
.

Since our values of λ1,λ2 ≤ 1,

lim
t→∞

q⃗[t] = lim
t→∞

(
α1t v⃗1 +β

(
1
4

)t

v⃗2

)
= α v⃗1

so the limit converges!

ii. We are given that the starting charges in the capacitors are Q1[0] = 10µC,Q2[0] = 6µC. What is
limt→∞ q⃗[t]?
Solution:
Notice that the columns of S sum to zero so our matrix is conservative! This means that the total
charge

Qtot = Q1[0]+Q2[0] = 16µC

remains constant. From the previous part, we know that the steady state solution will be of the
form

α v⃗1 = α

[
1
3

]
=

[
α

3α

]
.

The total charge is
Qtot = 16µC = α +3α =⇒ α = 4µC

Thus we will have

lim
t→∞

q⃗[t] = α v⃗1 =

[
4µC
12µC

]
.
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11. Fun with EECS16(AB) (12 points)

(a) (5 points) Suppose that A, B, are in Rn×n. Prove that if AB is invertible, then BA is invertible.
Hint: For matrices A, B, in Rn×n, the following fact holds:

det(A)det(B) = det(AB)

Solution: The determinant of an invertible matrix is not zero, and the determinant of a non-invertible
matrix is zero.
So if AB is invertible, det(AB) ̸= 0, which implies that both det(A) ̸= 0 and det(B) ̸= 0.
Then, if we consider matrix BA, det(BA) = det(B)det(A) ̸= 0, so BA must also be invertible. □

(b) (7 points) Prove the following theorem: If A ∈Rn×m and B ∈Rm×n for n > m, then AB is not invertible.
In other words, if A is a tall matrix and B is a wide matrix, then their product AB is not invertible.
Hint 1: What must be true about the nullspace of a matrix if it is not invertible?
Hint 2: What must be true about the nullspace of a wide matrix?
Solution: First, we argue that a wide matrix like B must have a nontrivial nullspace. Consider the
system of equations B⃗x = 0⃗. With more columns than rows, there could never be a pivot in every
column. Therefore, the system would always have infinite solutions, including nonzero ones, meaning
B has a nontrivial nullspace.
Now we want to show that AB is not invertible by showing that it also has a nontrivial nullspace.
Consider the equation (AB)⃗x = A(B⃗x) = 0⃗. If B has a nontrivial nullspace, there exists some nonzero
x⃗ such that B⃗x = 0⃗. If we plug in that x⃗, we would have AB⃗x = A · 0⃗ = 0⃗ for some nonzero x⃗, showing
that AB has a nontrivial nullspace. □
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12. Artificial Neuron (13 points)

EECS16A is trying to build an AI that can teach the course without any professors or TAs. You are tasked
with designing the artificial neuron circuit below that will be used as a core component of the EECS16A AI
neural network:

+

×

×

Activation Vout

Vin,1

Vin,2

w1

w2

Vthreshold

Vsum

(a) (8 points) Let’s design the first part of the neuron which is a weighted summer Vsum =w1Vin,1+w2Vin,2.
For our neuron, we are given negative weights w1 =−1.5,w2 =−1. Design a circuit that implements

Vsum =−1.5Vin,1 −Vin,2

using the components below. You may use multiple of each component. You may not need to use
every component.

−

+

−

+

1 Ω 2 Ω 3 Ω −
+5V

Solution:
There are several ways to implement an inverting summer. Here we will go over the simplest solution
which we have seen in HW12 P4.

−

+

R1

−
+ Vin,1

R2

−
+ Vin,2

R3

+

−

Vsum
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The output of this circuit is given by

Vsum =−R3

R1
Vin,1 −

R3

R2
Vin,2.

A quick way to verify this is by using superposition. Notice that if we only turn on one source and
short the other, the above circuit just becomes an inverting amplifier! Thus the inverting summer above
superposes the outputs of two inverting amplifiers.

We need to select values of R1,R2,R3 such that

w1 =−1.5 =−R3

R1
w2 =−1 =−R3

R2
.

Using the list of possible resistor values, we see that we can choose

R1 = 2Ω, R2 = 3Ω, R3 = 3Ω

to satisfy the equations above.

(b) (4 points) We now need to design the second portion of the circuit. Just like an actual neuron, our
artificial neuron should only fire if Vsum > Vthreshold. When the artificial neuron is inactive, we want
Vout = 0V. When the artificial neuron fires, we want Vout = 5V. For our neuron, we are given that
Vthreshold = 2.5V. Design a circuit that implements

Vout =

{
0V Vsum < 2.5V
5V Vsum > 2.5V

using the components below. You may use multiple of each component. You may not need to use
every component.

−

+

−

+

1 Ω 2 Ω 3 Ω −
+5V

Solution:
Since the output Vout is binary (switches between two values) we should use a comparator! The power
rails determine the output values so we should connect VDD to 5 V and VSS to ground. The output is
high when the input Vsum > Vthreshold thus Vsum should be connected to the positive input and Vthreshold
to the negative input.
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−

+

R2−
+ Vsum

R1

−
+ 5V

+

−

Vout

−
+ 5V

For our circuit, we want to set Vthreshold = 2.5V but we only have access to a 5 V voltage source. We
can use a voltage divider to create a 2.5 V node to connect to the negative input of the comparator. In
the circuit above, we need R1 = R2 which we can set to any of the given resistor values. Ex:

R1 = R2 = 1Ω.

(c) (1 point) When we connect two circuits to one another, we need to be careful about the effects of
loading. For the two parts of the artificial neuron circuit we designed, can we directly connect the
output of the weighted summer to the input of the thresholding circuit or do we need to add a buffer in
between?

# We need a buffer between the two circuits.

# We do not need a buffer between the two circuits.
Solution:
The loading effect occurs if the input of the second circuit draws current from the output of the first
circuit and changes the output voltage as a result. For the artificial neuron circuit we designed, we
notice that the input to the thresholding circuit is connected directly to the comparator which has no
input current. This means that even if we connect the two circuits we designed directly, no current will
flow between them. As a result, no buffer is needed in between the two circuits.
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