EECS 16A Designing [nformation Devices and Systems [
Spring 2015 Note 5

Lecture notes by Dasol Yoon (02/03/2015)

Imaging
Examples of imaging:

* Get readings from the brain, then construct an image from the information
» Milk, Juice, and Empty bottles arranged in a 3x3 carton.

— Example carton:
(See Figure 1)

— If we shine light through the carton, we can try to figure out what types of bottles are in that row
or column. A Milk bottle adds 3 units, a Juice bottle adds 2 units, and an Empty bottle adds 1
unit. So in our example carton, we would have 5 units total for the first row.

(See Figure 2)

— We have a closed carton, and we want to figure out what types of bottles are inside. A way that
we can do this is by shining light on each row, column, and diagonal.

(See Figure 3)

— To solve this, we just combine these equations:

X1 +x12+x13=35 X101 +x21+x31 =06
’ ’ ’ ’ . X110 +x20+x33=23
rows:§ X210 +X22+x23 =06 columns:  x1p+x20+x320 =3 diagonals: ’ ’
’ ’ ’ X13+x2+x31=35
X31+x32+x33=4 X13+x23+x33=06

to get the result.
(See Figure 4)

We have a 9x9 matrix that we want to image. We can take the following steps:

* Shine light onto the image
* Collect reflected light

* Collect measurement that says whether the pixel is black or white
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Figure 1: An example carton.
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Figure 2: Shining a light through row 1 of the example carton.
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Figure 3: Shining lights through our mystery carton.
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Figure 4: Our solved carton.
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* Ideally, we would shine light on every pixel:
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This is like the action of taking a picture and representing it with the matrix multiplication

* What if the photodetector had more constraints?
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We do not want to multiply by an 8x9 matrix because we could be losing information!

Linear Equations
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We want to try to get an invertible matrix.

ax X1 +axpxy; +asxs =by  az x;+azpxy+azzx; =bs
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T his would produce an all — gray bar.

T his would be closer to a gradient.
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Vector Spaces

A Basis is the minimum number of representations of the vectors in a vector space.
A vector space (V, IF) is a set of vectors V, a set of scalars [F, and two operators:

e Vector Addition

Associative: i+ (V+w) = (i +V)+w

Commutative: i +vV=V+iu

v

Additive Identity: O such that ¥+

0=
Additive Inverse: ¥, w such that V+w =0

* Scalar Multiplication

Associative: i - (V-w) = (i-V)-w

Commutative: (A -i)-V=A4-(i-V)

Multiplicative Identity: 1-V =V
Zero: 0-¥=0

Distributive Law: Scalar multiplication will distribute across vector addition.
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