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Op Amps with (not really) Infinite Gain

So far we’ve been assuming that op amps have infinite gain, and it can often be hard to picture how an op
amp actually converges to the value between the rails because of this infiniteness. Here we show exactly
how the math ends up working out. Remember, our gain is not actually infinite - it is just really, really big.

Recall the following formula from previous lectures for non-inverting amplifiers:

Vn =
R1

R1 +R2
×Vout

Let’s define f to be the coefficient in front of Vout. Explicitly, f = R1
R1+R2

.

Now, let’s start from the top, with another familiar formula.

A(Vp−Vn) =Vout

Based on our definition above, we know that this is equivalent to:

A(Vp− f ×Vout) =Vout

Now, if we simplify this by solving for Vout, we get:

Vout =
A

1+A f
×Vp

Now, as we assume A is really, really large, we can say as A→ ∞:

Vout =
1
f
×Vp

So as long as the A (the gain) is really large, it doesn’t really matter in our calculations.
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Cross-Correlation

Cross-correlation is a measurement of the similarity between two vectors - basically a sliding dot product
or inner product.

CDMA is a signature type for cell phones that consist of positive and negative 1 values. It stands for code
division multiple access.

Cells are regions of the world where all calls (for a specific company) are routed through a particular cell
phone tower. Cells are typically circular in shape, with the center at the place the corresponding cell tower
is at.

Orthogonality

Let’s say that x ∈Rn and y∈Rn. We know from previous encounters with orthogonality that the dot product
(inner product) is x · y = ‖x‖‖y‖cosθ . Also we know that if this quantity is zero (x · y = ‖x‖‖y‖cosθ = 0),
then x and y are orthogonal to each other.

Let’s try to show this for a case in R2. Say x = [x1 x2]
T and y = [y1 y2]

T . Here’s a drawing of them.
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Now by definition of the dot product, we know that x · y = x1y1 + x2y2.

At this point, we see the following, using high school trigonometry:

x1 = ‖x‖cosφ

y1 = ‖y‖cos(φ +θ)

x2 = ‖x‖sinφ

y2 = ‖y‖sin(φ +θ)
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Now if we take the equalities that we just found and substitute them into the definition of the dot product,
then we see that it simplifies down to:

x · y = ‖x‖‖y‖cosθ

Examples of Orthogonal Vectors

Two orthogonal vectors are shown below. It can be easily shown that their dot product is zero.

v1 = [1 −1 1 −1]

v2 = [1 1 1 1]

The reason we can call these CDMA vectors is because they only have values of 1 and −1 in them.

Trilateration

Let’s imagine we have a situation like the one below. We know the locations of the beacons ~a1,~a2,~a3, but
don’t know the location of the point at ~x (we’ll be trying to find out what ~x is). We do know the distances
d1,d2,d3.

a1
a2

a3

x

d1

d2

d3

We’re trying to find the coordinates of~x in this diagram.

Now, we know that:

1. ‖~x−~a1‖2 = d2
1

2. ‖~x−~a2‖2 = d2
2

3. ‖~x−~a3‖2 = d2
3

EECS 16A, Spring 2015, Note 16 3



But we have squared terms here. That’s not really conducive to our style of computation - we prefer linear
terms, so we can use linear algebra.

Let’s subtract equation 1 from equation 2, and separately again from equation 3. Then we get:

2(~a1−~a2)
T ·~x = ‖~a1‖2−‖~a2‖2−d2

1 +d2
2

and

2(~a1−~a3)
T ·~x = ‖~a1‖2−‖~a3‖2−d2

1 +d2
3

We can then stick these into a matrix, which will only have linear terms:

[
2(~a1−~a2)

T

2(~a1−~a3)
T

]
·~x =

[
‖~a1‖2−‖~a2‖2−d2

1 +d2
2

‖~a1‖2−‖~a3‖2−d2
1 +d2

3

]
.
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