Design Example Continued

Continuing our analysis for “countdown timer” circuit.

![Circuit Diagram]

We know for a capacitor C:

$$ I = C \frac{dV}{dt} \quad (1) $$

There is a linear relationship between the voltage across capacitor $V(t)$ and charging time t.

![Graph]

When a button is pressed, we want to turn on some circuit after 2s. Given that voltage is linearly dependent on charging time, we can use a comparator and a reference voltage V_{ref} to decide if 2s has already passed.
after the button press to decide whether or not to turn on some circuit.

Adding an op-amp comparator and a voltage source V_{ref} to the “countdown timer” circuit:

Obviously, V_{ref} should be set equal to the voltage of C_{ref} after charging for 2s. After 2s since the button is pressed, if the voltage across C_{ref} becomes higher than V_{ref}, the comparator outputs $2V$ to the output of the op-amp to turn on the LED.

Step 4: design verification

Now, let’s actually analyze the design completely to make sure it works. Before the button is pressed, the circuit on the current source side looks like:

According to KCL,

$$I_s = I_L$$ \hspace{1cm} (2)

I_s is the constant current supplied by the current source, I_L is the current flow into the switch. Before touch, I_L must equal 0 since there is an open circuit. However, the current source guarantees that I_s is nonzero. It is very easy to see that mathematically this is problematic, how do we solve the problem? We can add another switch in the circuit:
Before touch, the switch is on and can be replaced by a wire:

After touch, the switch is off and can be replaced by an open circuit:

In either cases, there is a loop in the circuit for I_s to flow. Now, there is a remaining mystery to be answered, how do we build that current source?

20.1 “Almost” current source

In this section, we will use resistors, voltage sources and op amps to build a current source. We know by Ohm’s law,

$$ I = \frac{V}{R} \quad (3) $$

If we have a voltage source V_s, we can scale it by a resistance value R, then we should get a constant current I_s.

Now let’s use our design procedures to build a current source.
Step 1 restate design goal: we want to build a current source that can output constant current regardless of whatever elements we hook up to it.

Step 2 Let’s now take a voltage source and connect it to a resistor to output a current:

Attempt #1

In the above circuit,

\[u_1 = V_s \quad (4) \]

\[I_s = \frac{V_s}{R} \quad (5) \]

However, if we hook up an element between \(u_2 \) and ground, we can tell immediately that the current through \(R \) is no longer the constant \(I_s = \frac{V_s}{R} \).

Attempt #2 Although our attempt 1 has failed, we have learned an important lesson: if we can somehow set \(u_2 \) to 0V without physically connecting it to ground. The current through \(R \) will always equal \(\frac{V_s}{R} \) (\(I_R = \frac{u_1-u_2}{R} = \frac{V_s-0}{R} \)). According to golden rule #2, we can set both \(V_+ \) and \(V_- \) to 0V if an op amp circuit is in negative feedback. Indeed, we will now use an op amp to build a current source!
According to golden rules:

\[I_- = 0 \] \hspace{1cm} (6)

\[V_- = V_+ = 0V \] \hspace{1cm} (7)

We also know that the current across \(R \) will always be:

\[I_s = \frac{u_1 - u_2}{R} \] \hspace{1cm} (8)

Solving the above equations, we can get the value of \(I_s \):

\[I_s = \frac{V}{R} \] \hspace{1cm} (9)

By setting \(u_2 (V_-) \) to 0V by using a negative feedback circuit, we have succesfully built a current source! It is important to keep in mind setting \(u_2 \) to 0V by using a negative feedback circuit is very different from physically connecting the node of \(u_2 \) to ground. If we physically connect \(u_2 \) to ground by adding a wire between \(V_- \) and \(V_+ \):

If we physically connect both \(V_- \) and \(V_+ \) to ground, \(I_L \) will become 0A because it is shorted by the wire between \(V_- \) and \(V_+ \). Instead, now we have \(I_1 = I_s \). So we must not physically connect \(V_- \) to ground. Let’s now hook up a resistor \(R_L \) to the circuit and prove that current flow through \(R_L \) is constant:
According to KCL:

\[I_L = I_s = \frac{V}{R_s} \] \hspace{1cm} (10)

From \(I_L \) equation, we can see immediately that \(I_L \) is not affected by changes in \(R_L \). How does the circuit maintain the constant current flow through \(R_L \)?

The op-amp outputs a negative \(V_{out} \) to maintain a constant current flow through \(R_L \). In other words, the voltage drop across \(R_L \) is always given by

\[V_{R_L} = \frac{V}{R_S} \times R_L \] \hspace{1cm} (11)

Now let us plug in the current source to the following circuit:

The circuit becomes:
Now \(u_3 \) is connected to ground. By doing this, the voltage across \(C_{ref} \) becomes:

\[
V_{\text{time}} = u_2 - u_3 = 0V - 0V = 0V
\]

(12)

There is even a worse problem, recall that there is an controlled voltage source inside the op-amp, this op-amp wants to set \(u_3 \) to some nonzero value \(A \cdot V_c \) but \(u_3 \) is also manually connected to 0V. The fix to solve this problem is to simply get rid of the ground connection.

\[
I_s = C_{ref} \frac{dV}{dt}
\]

(13)

\[
I_s = C_{ref} \frac{d(u_2 - u_3)}{dt}
\]

(14)

According to golden rule #2, \(u_2 = 0V \).

\[
I_s = C_{ref} \frac{d(0V - u_3)}{dt} = C_{ref} \frac{d(-u_3)}{dt}
\]

(15)
Solving the above equation:

\[u_3(t) = -\frac{I_s}{C_{ref}} \times t + u_3(t = 0s) \] \hspace{1cm} (16)

\[u_3(t) \] is associated with the initial value \(u_3(t = 0s) \). Before touch, the switch \(S1 \) is on, which sets \(u_3(t = 0s) \) to 0V. Therefore,

\[u_3(t) = -\frac{I_s}{C_{ref}} \times t = -\frac{V_s}{R_sC_{ref}} \times t \] \hspace{1cm} (17)

Note there is a term \(R_sC_{ref} \) in the denominator, what is the unit of \(R_sC_{ref} \)?

Unit for \(R_sC_{ref} = \frac{V}{A} \times CV = \frac{C}{A} = \text{second} \) \hspace{1cm} (18)

It is good to know that this multiplication result of \(RC \) is very useful and common in the timing analysis for circuits, this is an indicator of how fast a circuit is.

There are 2 important points to keep in mind when this current source:

- Do not connect the circuit element that we want to supply the constant current to with ground externally. Doing so may force \(V_{out} \) of the op-amp to 0V and lead to nonidealities.

- The circuit element we hook up to the current source must still keep the op-amp circuit in its negative feedback state. Being in negative feedback allows us to set the node \(u_2 \) to 0V without physically connecting it to ground and hence allows a constant current output.