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EECS 16A Designing Information Devices and Systems I
Spring 2019 Discussion 3A

1. Mechanical Inverses

In each part, determine whether the inverse of A exists. If it exists, find it.

(a) A =

[
1 0
0 9

]
Answer:
We apply the Gauss-Jordan method:

[
1 0 1 0
0 9 0 1

]R2← 1
9 R2︷︸︸︷⇒ [

1 0 1 0
0 1 0 1

9

]

Therefore, we get A−1 =

[
1 0
0 1

9

]
.

(b) A =

[
5 4
1 1

]
Answer:
We apply the Gauss-Jordan method:[

5 4 1 0
1 1 0 1

] R1←R2︷︸︸︷⇒ [
1 1 0 1
5 4 1 0

]
R2←−5R1+R2︷︸︸︷⇒ [

1 1 0 1
0 −1 1 −5

] R1←R1+R2︷︸︸︷⇒ [
1 0 1 −4
0 −1 1 −5

]
R2←−R2︷︸︸︷⇒ [

1 0 1 −4
0 1 −1 5

]

Therefore, we get A−1 =

[
1 −4
−1 5

]
.

(c) A =

5 5 15
2 2 4
1 0 4


Answer:
We apply the Gauss-Jordan method: 5 5 15 1 0 0

2 2 4 0 1 0
1 0 4 0 0 1

 R1← 1
5 R1︷︸︸︷⇒
 1 1 3 1

5 0 0
2 2 4 0 1 0
1 0 4 0 0 1


R2← 1

2 R2︷︸︸︷⇒
 1 1 3 1

5 0 0
1 1 2 0 1

2 0
1 0 4 0 0 1

 R2←R2−R1︷︸︸︷⇒
 1 1 3 1

5 0 0
0 0 −1 −1

5
1
2 0

1 0 4 0 0 1


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R3←R3−R1︷︸︸︷⇒
 1 1 3 1

5 0 0
0 0 −1 −1

5
1
2 0

0 −1 1 −1
5 0 1

 R2↔R3︷︸︸︷⇒
 1 1 3 1

5 0 0
0 −1 1 −1

5 0 1
0 0 −1 −1

5
1
2 0


R2←−R2︷︸︸︷⇒

 1 1 3 1
5 0 0

0 1 −1 1
5 0 −1

0 0 −1 −1
5

1
2 0

 R3←−R3︷︸︸︷⇒
 1 1 3 1

5 0 0
0 1 −1 1

5 0 −1
0 0 1 1

5 −1
2 0


R2←R2+R3︷︸︸︷⇒

 1 1 3 1
5 0 0

0 1 0 2
5 −1

2 −1
0 0 1 1

5 −1
2 0

 R1←R1−3R3︷︸︸︷⇒
 1 1 0 −2

5
3
2 0

0 1 0 2
5 −1

2 −1
0 0 1 1

5 −1
2 0


R1←R1−R2︷︸︸︷⇒

 1 0 0 −4
5 2 1

0 1 0 2
5 −1

2 −1
0 0 1 1

5 −1
2 0



Therefore, we get A−1 =

−4
5 2 1

2
5 −1

2 −1
1
5 −1

2 0

.

(d) A =

5 5 15
2 2 4
1 1 4


Answer:
We apply the Gauss-Jordan method: 5 5 15 1 0 0

2 2 4 0 1 0
1 1 4 0 0 1

 R1← 1
5 R1︷︸︸︷⇒
 1 1 3 1

5 0 0
2 2 4 0 1 0
1 1 4 0 0 1


R2← 1

2 R2︷︸︸︷⇒
 1 1 3 1

5 0 0
1 1 2 0 1

2 0
1 1 4 0 0 1

 R2←R2−R1︷︸︸︷⇒
 1 1 3 1

5 0 0
0 0 −1 −1

5
1
2 0

1 1 4 0 0 1


R3←R3−R1︷︸︸︷⇒

 1 1 3 1
5 0 0

0 0 −1 −1
5

1
2 0

0 0 1 −1
5 0 1

 R3←R3+R2︷︸︸︷⇒
 1 1 3 1

5 0 0
0 0 −1 −1

5
1
2 0

0 0 0 −2
5

1
2 1


While row-reducing, we notice that the second column doesn’t have a pivot (and that there is also a
row of zeros). Therefore, no inverse exists.

Reference Definitions

Vector spaces: A vector space V is a set of elements that is ‘closed’ under vector addition and scalar
multiplication and contains a zero vector. What does closed mean?

That is, if you add two vectors in V , your resulting vector will still be in V . If you multiply a vector in V by
a scalar, your resulting vector will still be in V .

More formally, a vector space (V , F) is a set of vectors V , a set of scalars F , and two operators that satisfy
the following properties:

• Vector Addition
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– Associative: ~u+(~v+~w) = (~u+~v)+~w for any~v,~u,~w ∈V .
– Commutative: ~u+~v =~v+~u for any~v,~u ∈V .
– Additive Identity: There exists an additive identity~0 ∈V such that~v+~0 =~v for any~v ∈V .
– Additive Inverse: For any ~v ∈ V , there exists −~v ∈ V such that ~v+(−~v) =~0. We call −~v the

additive inverse of~v.

• Scalar Multiplication

– Associative: α(β~v) = (αβ )~v for any~v ∈V , α,β ∈ F .
– Multiplicative Identity: There exists 1 ∈ F where 1 ·~v =~v for any~v ∈ F . We call 1 the multiplica-

tive identity.
– Distributive in vector addition: α (~u+~v) = α~u+α~v for any α ∈ F and~u,~v ∈V .
– Distributive in scalar addition: (α +β )~v = α~v+β~v for any α,β ∈ F and~v ∈V .

Subspaces: A subset W of a vector space V is a subspace of V if the above conditions (closure under vector
addition and scalar multiplication and existence of a zero vector) hold for the elements in the subspace W .

The vector spaces we will work with most commonly are Rn and Cn as well as their subspaces.

2. Identifying a Basis

Does each of these sets of vectors describe a basis for R3? What about for some subspace of R3?

V1 =


1

1
1

 ,
1

0
1

 V2 =


1

1
1

 ,
1

0
1

 ,
1

0
0

 V3 =


1

1
1

 ,
1

0
1

 ,
0

1
0


Answer:

• V1: The vectors are linearly independent, but they are not a basis for R3. Instead, they are a basis for
some 2-dimensional subspace of R3.

• V2: Yes, the vectors are linearly independent and will form a basis for R3.

• V3: No,~v2 +~v3 =~v1, so the vectors are linearly dependent.

3. Identifying a Subspace: Proof

Is the set

V =

~v
∣∣∣∣∣∣~v = c

1
1
1

+d

1
0
1

 , where c,d ∈ R


a subspace of R3? Why/why not?

Answer:

Yes, V is a subspace of R3. We will prove this by using the definition of a subspace.

First of all, note that V is a subset of R3 – all elements in V are of the form

c+d
c

c+d

, which is a 3-dimensional

real vector.

Now, consider two elements~v1,~v2 ∈V and α ∈ R.
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This means that there exists c1,d1 ∈ R, such that ~v1 = c1

1
1
1

+ d1

1
0
1

. Similarly, there exists c2,d2 ∈ R,

such that~v2 = c2

1
1
1

+d2

1
0
1

.

Now, we can see that

~v1 +~v2 = (c1 + c2)

1
1
1

+(d1 +d2)

1
0
1

 ,
so~v1 +~v2 ∈V .

Also,

α~v1 = (αc1)

1
1
1

+(αd1)

1
0
1

 ,
so α~v1 ∈V .

Furthermore, we observe that the zero vector is contained in V , when we set c = 0 and d = 0.

We have thus shown both of the no escape (closure) properties and the existence of a zero vector, so V is a
subspace of R3.
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