

Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig
Fall 2021

Module 2
Lecture 10
Negative Feedback
(Note 18)

Last Class...

Voltage Divider

$$
V_{\text {speaker }}=\frac{V_{\text {th }}}{126} \quad \text { Not loud! }
$$

Need to isolate DAC.

Digital to Analog Converter - DAC

Digital to Analog Converter - DAC

(classical music)

Need to isolate DAC with controlable gain!

Negative Feedback

$$
\begin{aligned}
& \text { Sere }=S_{\text {in }}-S_{f b} \\
& \text { Sout }=A \cdot \text { Serf } \\
& S_{\text {sb }}=f \cdot \text { Stout }^{\text {Pout }}=\operatorname{Sin}-S_{f_{b}} \\
& \text { Sout }^{A}\left(\frac{1}{A}+f\right)=\operatorname{Sin} \\
& \frac{S_{\text {out }}}{\operatorname{Sin}}=\frac{1}{\frac{1}{A}+f}=\frac{A}{1+A f}
\end{aligned}
$$

- Making small adjustments to correct output on the fly
- Basis of control theory
- Many examples in daily life:
- Biology
- Self-driving car
- Human driving car
- Hand-eye coordination

Negative Feedback

$$
\begin{aligned}
& \frac{S_{\text {out }}}{\operatorname{Sin}}=\frac{A}{1+A f}\left\{\begin{array}{l}
\text { Describes the behaviour of the } \\
\text { system - transfer function } \\
\text { How Sout depends on Sin }
\end{array}\right. \\
& \frac{S_{\text {out }}^{\sin } A \rightarrow \infty}{}=\frac{1}{f}
\end{aligned}
$$

We control the output via block [f] So $V_{\text {out }}=\frac{1}{f}$ Sin for very large gain.

Lo we can set f to get any output. (Beautiful result) ())

Need to isolate the DAC from speaker - OP-Amp with NFB

- We want to measure Vout, take a portion of the signal and feedback as U^{-}

$$
\begin{aligned}
& U^{+}=\operatorname{Sin} \\
& V_{\text {out }}=S_{\text {out }} \\
& U^{-}=S_{f b} \\
& U^{+}-U^{-}=S_{e r r}
\end{aligned}
$$

Model:

Simpler model as the second source is not "needed".
(1) $V_{d}=U^{+}-U^{-}=V_{\text {in }}-V_{f b} 7$

$$
V_{\text {out }}=A\left(V_{\text {in }}-f \cdot V_{\text {out }}\right)
$$

(2) $\quad V_{\text {out }}=A V_{d}$
(3) $V_{S_{b}}=\frac{R_{2}}{R_{1}+R} \cdot V_{\text {out }}$
"BuFfer circuit" $R_{1}+R_{2}$
us
$V_{\text {out }}(1+A f)=A V_{\text {in }}$
$A_{v}=$ Gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+A f}$
$A_{A \rightarrow \infty}=\frac{1}{f} \psi_{0} \quad \frac{R_{1}+R_{2}}{R_{2}}=1+\frac{R_{1}}{R_{2}}$

Golden Rules of Op-Amps For our design we want $A=3$

$$
\begin{aligned}
V_{d} & =\frac{V_{\text {out }}}{A} \text { if } A \rightarrow \infty \\
V_{d} & =\frac{1}{A} \cdot \frac{A}{1+A f} V_{\text {in }}=\frac{V_{\text {in }}}{1+A f}=0
\end{aligned}
$$

In NFB: $U^{+}=U^{-}$and $A \rightarrow \infty$
Rules: (Golden Rules)
(1) $I^{+}=I^{-}=0$ (always true)
(2) $U^{+}=U^{-}$(only in NFB \& $A \rightarrow \infty$)

Let's go back to playing music

Party time!
May!

Today

Voltage Divider

Checking for Negative Feedback (Dcterming the polenty of NFB)
Step 1 - Zero out all independent sources : replacing voltage sources with wires and current sources with open circuits as in superposition

Step 2 - Wiggle the output and check the loop - to check how the feedback loop responds to a change.

- if the error signal decreases, the output must also decrease. The circuit is in negative feedback
- if the error signal increases, the output must also increase. The circuit is in positive feedback

$N F B \Rightarrow G R \# 2$ applies

$$
U^{t}=U^{-}
$$

(4)

$$
\begin{aligned}
& U_{1}=V_{\text {in }} \\
& U_{3}=V_{\text {out }} \\
& U_{2}=0 \quad \text { (circuit in NFB } \Rightarrow G R \not W_{2} \text { applies } U^{+}=U^{-} \\
& L_{1} U_{2}=U^{-} \text {We know } U^{+}=0 \Rightarrow U^{-}=0 \\
& U^{-}=U_{2} \Rightarrow U_{2}=0 \text {) }
\end{aligned}
$$

(2) E

Element Definitions:

$$
\begin{aligned}
& V_{R_{1}}=I_{1} R_{1} \\
& V_{R_{2}}=I_{2} R_{2}
\end{aligned}
$$

Voltage Def.

$$
\begin{aligned}
& \text { Voltage Def. }_{\text {Def }}=V_{1}=V_{\text {in }} \\
& V_{R_{1}}=U_{1}-V_{2}^{\prime 0}=V_{1} \\
& V_{1}=V_{3}-V_{2}^{\prime 0^{\prime 0}}=V_{3}=V_{\text {ow }}
\end{aligned}
$$

$$
\begin{aligned}
& V_{R_{1}}=U_{1}-V_{2}^{7}=V_{1}=V_{\text {in }} \\
& V_{R 2}=U_{3}-V_{2}^{\prime 0}=V_{3}=V_{\text {out }}
\end{aligned}
$$

A faster way...

GRE: $U^{+}=U^{-}$

$$
\begin{aligned}
& U_{2}=U^{-} \\
& U^{+}=0
\end{aligned} \Rightarrow U_{2}=0
$$

GRO $+\mathrm{KCL} \quad\left(I_{1}=I_{2}+I^{-}\right)$
$\frac{U_{2}^{0}-U_{1}}{R_{1}}=\frac{U_{3}-V_{2}^{1}}{R_{2}}+I^{0}$
$-\frac{V_{1}}{R_{1}}=\frac{V_{3}}{R_{2}}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}$

Example circuit 2 (trans-resistance amplifier)

$$
I^{t}=0 \Rightarrow U_{1}=U_{2}
$$

Invert polarity

Step 1
Step 2: check for NFB
Increase output \rightarrow + moves up
\times Not in output increases NEB by a lot

NEB: $U^{+}=U^{-}$

$$
U^{t}=0 \rightarrow U^{-}=0
$$

$$
\begin{aligned}
& G R \neq 2 \\
& \frac{V^{G R 2}-V_{\text {out }}}{R}+\left(-I_{\text {In }}\right)+I^{\text {GR }}=0 \\
& \frac{-V_{\text {ouT }}}{R}=I_{\text {in }}
\end{aligned}
$$

$$
V_{\text {out }}=-\operatorname{Iin} R
$$

The input is current; output is Voltage: we use this model

$$
\frac{V_{\text {out }}}{I_{\text {in }}}=-R
$$ in the lab for photo sensors!

Example circuit 3 -

Check NFB:

Voltage Divider

$$
\begin{aligned}
& V_{f}=\frac{R_{2}}{R_{1}+R_{2}} \cdot V_{\text {out }} \\
& N F B \quad(G R \neq 2) \quad U^{-}=U t \\
& V_{\text {/ }}=-V_{f}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {in }}=-\frac{R_{2}}{R_{1}+R_{2}} V_{\text {out }} \Rightarrow \frac{V_{\text {in }}}{V_{\text {out }}}=-\frac{R_{2}}{R_{1}+R_{2}} \\
& A_{V}=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{1}+R_{2}}{R_{2}}=-\left(1+\frac{R_{1}}{R_{2}}\right)
\end{aligned}
$$

Artificial Neuron

(Energy Efficient Neural Notworks) - Yes we can!

- Neurons in our brairdare interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

$$
\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=a_{1} v_{1}+a_{2} \cdot v_{2}
$$

An Artificial Neuron

Artificial Neuron

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

Inverting summer

Check for NFB:

$$
\begin{aligned}
& -\frac{V_{1}}{R_{1}}-\frac{V_{2}}{R_{2}}=\frac{V_{\text {out }}}{R_{3}} \\
& V_{\text {out }}=-\frac{R_{3}}{R_{1}} \cdot V_{1}+\left(-\frac{R_{3}}{R_{2}} V_{2}\right)+\cdots+\left(-\frac{R_{3}}{R_{N}} V_{N}\right) \\
& \text { only negative Weights } \\
& a_{1 N} u_{n}
\end{aligned}
$$

All weights are negative: How can we make a_{1} and a_{2} positive?

Add another inverting amplifier circuit.

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}
$$

$$
V_{\text {out }}=-\frac{R_{2}}{R_{1}} \cdot V_{\text {in }}
$$

$V_{\text {out }}=-V_{\text {in }}$ (when R_{1} and R_{2} are t_{2} same)

Unity Gain Buffer
L. Allows us to isolate

$$
U^{+}=U_{\text {in }}
$$

$$
U^{-}=V_{\text {out }}
$$

GR2

$$
\begin{aligned}
& U^{+}=U^{-} \\
& V_{\text {in }}=V_{\text {OUT }}
\end{aligned}
$$

Speaker Design

$$
I^{+}=0 \Rightarrow U^{+}=V_{D A C}
$$

$V_{\text {out }}=V_{\text {speaker }}=U^{-} \Rightarrow U^{t}=V^{-}$
$V_{D A C}=V_{\text {speaker }}$

