
EECS 16A Designing Information Devices and Systems I
Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Midterm 1

Exam Location: 2050 VLSB

PRINT your student ID:

PRINT AND SIGN your name: ,
(last name) (first name) (signature)

PRINT your Unix account login: ee16a-

PRINT your discussion section and GSI(s) (the one you attend):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. What did you do on the Fourth of July? (1 point)

2. What activity do you really enjoy? (1 point)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

3. Mechanical Matrix (12 points)

Consider the matrix A below:

A =

2 0 −1
0 −2 0
0 0 1


(a) (4 points) Calculate A2.

Solution:

A2 =

2 0 −1
0 −2 0
0 0 1

2 0 −1
0 −2 0
0 0 1

=

4 0 −3
0 4 0
0 0 1



(b) (2 points) What is det(A)?
Solution:
Since A is upper triangular, the determinant of A is equal to the product of its diagonal entries.

det(A) = 2 · (−2) ·1 =−4

(c) (6 points) Calculate A−1, the inverse of A.
Solution:

 2 0 −1 1 0 0
0 −2 0 0 1 0
0 0 1 0 0 1

R1←R1+R3︷︸︸︷
=⇒

 2 0 0 1 0 1
0 −2 0 0 1 0
0 0 1 0 0 1


R1← 1

2 R1︷︸︸︷
=⇒

 1 0 0 1
2 0 1

2
0 −2 0 0 1 0
0 0 1 0 0 1

R2←− 1
2 R2︷︸︸︷

=⇒

 1 0 0 1
2 0 1

2
0 1 0 0 −1

2 0
0 0 1 0 0 1



A−1 =

1
2 0 1

2
0 −1

2 0
0 0 1



EECS 16A, Summer 2017, Midterm 1 2



PRINT your name and student ID:

4. You Have Null Idea (12 points)

Consider the matrix A below:

A =

4 1 2
2 5 1
6 3 3


(a) (2 points) Is A invertible? Justify your answer.

Solution:
You can visually inspect that column 1 of A is 2-times column 3 of A. Therefore, the two columns are
linearly dependent, and A is not invertible by the Invertible Matrix Theorem.
If you don’t observe the dependence in the columns immediately, you can alternatively solve this part
using Gaussian elimination. 4 1 2

2 5 1
6 3 3


Switching row 1 and row 2 gives 2 5 1

4 1 2
6 3 3


Dividing row 3 by 3 gives 2 5 1

4 1 2
2 1 1


Subtracting row 1 from row 3 gives 2 5 1

4 1 2
0 −4 0


Dividing row 3 by −4 gives 2 5 1

4 1 2
0 1 0


Subtracting row 3 from row 2 gives 2 5 1

4 0 2
0 1 0
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Subtracting 5 times row 3 from row 1 gives 2 0 1
4 0 2
0 1 0


Subtracting 2 times row 1 form row 2 gives 2 0 1

0 0 0
0 1 0


Since there is a row of all zeros, the matrix is not invertible.

(b) (4 points) Find a basis for the column space of A.
Solution:
The first two columns of the reduced row echelon form of A have pivots. Therefore, the first two

columns of A constitute a basis for the column space of A. That is,


4

2
6

 ,
1

5
3

 is a basis for

Col(A).
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A copy of the matrix for reference: A =

4 1 2
2 5 1
6 3 3


(c) (6 points) Find a basis for the null space of A.

Solution:
From part (a), we know the row echelon form of A.

A =

4 1 2
2 5 1
6 3 3

∼
2 0 1

0 1 0
0 0 0


The third column has no pivot, so x3 is a free variable. From the second equation, we know that x2 = 0.
From the first equation, we know that x1 =−1

2 x3.
Therefore, the null space is given by

~x = x3

−1
2

0
1

 ,x3 ∈ R.

A basis for the null space of A would be


−1

2
0
1

.
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5. Diagonalization (8 points)
Consider the matrix A below:

A =

[
6 −1
2 3

]
If the matrix A is diagonalizable as A = VΛΛΛV−1, write out the matrices V, ΛΛΛ, and V−1 explicitly. If the
matrix A is not diagonalizable, explain why.
Solution:
Start by calculating the eigenvalues: ∣∣∣∣[6−λ −1

2 3−λ

]∣∣∣∣= 0

(6−λ )(3−λ )+2 = 0

λ
2−9λ +20 = 0

(λ −5)(λ −4) = 0

λ = 4,5

Since the eigenvalues are distinct, we will have 2 linearly independent eigenvectors, which means that A is

diagonalizable. Therefore, we can write ΛΛΛ =

[
4 0
0 5

]
.

We now calculate the corresponding the eigenvectors (matrices V and V−1):

For λ = 4: [
6−4 −1

2 3−4

]
~x =~0[

2 −1
2 −1

]
~x =~0[

2 −1
0 0

]
~x =~0

~x =
[

1
2

]
For λ = 5: [

6−5 −1
2 3−5

]
~x =~0[

1 −1
2 −2

]
~x =~0[

1 −1
0 0

]
~x =~0

~x =
[

1
1

]

Therefore, V =

[
1 1
2 1

]
, and using the 2×2 inverse formula from lecture, we know that V−1 =

[
−1 1
2 −1

]
.
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6. Vector Space (16 points)

Consider R3, a vector space with the usual operations of vector addition and scalar vector multiplication.

Let S be the following set of vectors from R3:

S =


1

0
1

 ,
1

1
2


(a) (2 points) Is the set S linearly independent or is it linearly dependent? Justify your answer.

Solution:
S is linearly independent because the vectors aren’t a scaled version of one another.

(b) (6 points) Let W= span(S). Show that W forms a subspace of R3.
Solution:

Let’s give names to the vectors in S: ~v1 =

1
0
1

 and~v2 =

1
1
2

. Then

W= {α1~v1 +α2~v2 | α1,α2 ∈ R} ⊂ R3.

Closure:

i. Scaling: If ~w ∈W and β ∈ R, then ~w = α1~v1 +α2~v2 and therefore β~w = βα1~v1 +βα2~v2, which
means β~w ∈W.

ii. Additivity: If ~w,~y ∈W, then ~w = α1~v1 +α2~v2 and~y = β1~v1 +β2~v2. Since ~w+~y = α1~v1 +α2~v2 +
β1~v1 +β2~v2 = (α1 +β1)~v1 +(α2 +β2)~v2, which means ~w+~y ∈W.

Zero:~0 = 0~v1 +0~v2 ∈W.
We showed the three properties that prove that W is a subspace of R3.
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(c) (6 points) Let~v =

 2m
m+3

0

 ,m ∈ R.

For what value(s) of m is~v ∈ span(S)?
Solution:

~v =

 2m
m+3

0

 is in span(S) = span


1

0
1

 ,
1

1
2

 if we can write, for some α1,α2 and m:

α1

1
0
1

+α2

1
1
2

=

 2m
m+3

0

 (1)

We solve for α1,α2 and m by rewriting the system of equations 1 into

α1

1
0
1

+α2

1
1
2

−m

2
1
0

=

0
3
0

 .
By writing this system in matrix form, we get: 1 1 −2 0

0 1 −1 3
1 2 0 0

R3←R3−R1︷︸︸︷
=⇒

 1 1 −2 0
0 1 −1 3
0 1 2 0

R3←R3−R2︷︸︸︷
=⇒

 1 1 −2 0
0 1 −1 3
0 0 3 −3


At this point we know that m = −1 and we can stop. However, if we want to solve for α1 and α2 to
verify our solution, we continue:

R3← 1
3 R3︷︸︸︷

=⇒

 1 1 −2 0
0 1 −1 3
0 0 1 −1

R1←R1+2R3︷︸︸︷
=⇒

 1 1 0 −2
0 1 −1 3
0 0 1 −1


R2←R2+R3︷︸︸︷
=⇒

 1 1 0 −2
0 1 0 2
0 0 1 −1

R1←R1−R2︷︸︸︷
=⇒

 1 0 0 −4
0 1 0 2
0 0 1 −1


Therefore, α1 =−4,α2 = 2, and m =−1.

If we verify: −4

1
0
1

+2

1
1
2

=

−2
2
0

 and

 2m
m+3

0

=

−2
2
0

, so our solution is correct.
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(d) (2 points) We define a new set

Snew =


1

0
1

 ,
1

1
2

 ,
 2m

m+3
0


For what value(s) of m will Snew be a valid basis for R3?
Solution:
Because S is linearly independent, the augmented set Snew will be a basis as long as~v is not in the span

of the original S (that is, as long as

 2m
m+3

0

 is linearly independent of the elements of S). This is to

say that as long as m 6=−1,~v will complete Snew to become a valid basis for R3.
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7. Matrix Trix (10 points)

Let n ∈ {1,2, . . .} be a positive integer. We define the transformation T : Rn→ Rn as follows:

Given a vector~x ∈ Rn, T (~x) reverses the order of the n components in the input vector.

Explicitly, T




x1
x2
...

xn


,


xn

xn−1
...

x1

.

(a) (2 points) Let’s start with an example where n = 4. Suppose we have a vector~a∈R4, where~a =


a1
a2
a3
a4

.

Then, if we apply the transformation T , we reverse the order of the entries, so T (~a) =


a4
a3
a2
a1

. Find the

matrix representation A of the transformation T , such that T (~a) = A~a.
Solution:

A =

 | | | |
T (~e1) T (~e2) T (~e3) T (~e4)
| | | |

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



(b) (1 point) We now go back to the general case. Let n ∈ {1,2, . . .} be a positive integer. Again, T : Rn→

Rn is defined, as described above, as T




x1
x2
...

xn


=


xn

xn−1
...

x1

. Let B be the matrix representation of the

transformation T . For any~x ∈ Rn, write B2~x in terms of~x.
Solution:

B2~x = T (T (~x)) =~x
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(c) (7 points) Show that if λ is an eigenvalue of the matrix B, then either λ = 1 or λ =−1 (that is, λ

can’t have any value other than 1 or −1).
Hint: You don’t need to write out the matrix B explicitly.
Solution:
Suppose that λ is an eigenvalue of B with the corresponding eigenvector~x.

B~x = λ~x

Left-multiplying both sides by B gives

B2~x = λB~x = λ
2~x.

We know from part (b) that B2~x =~x, so we equate the RHS of these equations.

λ
2~x =~x

(λ 2−1)~x =~0

Since the eigenvector~x is a non-zero vector, we get that λ 2−1= 0, which implies λ 2 = 1 =⇒ λ =±1.
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8. Aw Snap, I’m All Ears (15 points)

One day while Daniel, Vasuki, and Fil are playing with the filters on Snapchat, they realize that what they’re
teaching in EE16A is sufficient to understand how the animated filters can be adjusted to match different
facial structures.

Each animated face filter needs three anchor points to place the filter. The default anchor points are ~p1 =[
5
15

]
,~p2 =

[
15
15

]
, and ~p3 =

[
10
0

]
. See Figure 8.1 for an example placement.

Figure 8.1: Left: bunny ears filter with default anchor points. Right: bunny ears filter placed onto a face
using the default anchor points.

However, these default anchor points don’t always work for all users. Now, it’s up to you to line up each
filter’s anchor points to the user’s face’s matching anchor points.

The parts for this problem start on the next page.

This space was intentionally left blank.
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(a) (3 points) Daniel’s anchor points are ~d1 =

[
12.5
45

]
, ~d2 =

[
37.5
45

]
, and ~d3 =

[
25
0

]
(see Figure 8.2). De-

rive a linear transformation matrix A that appropriately scales the default anchor points to fit
Daniel’s face. Precisely, the transformation should achieve A~pi = ~di for all i ∈ {1,2,3}. It should

take the form of A =

[
a 0
0 b

]
,a,b ∈ R. If this is not possible, prove that it is not possible.

Figure 8.2: Daniel as a bunny.

Solution:
We solve the systems of linear equations[

a 0
0 b

][
5
15

]
=

[
12.5
45

]
,

[
a 0
0 b

][
15
15

]
=

[
37.5
45

]
,

[
a 0
0 b

][
10
0

]
=

[
25
0

]
which yield the following equations 

5a = 12.5
15a = 37.5
10a = 25
15b = 45
15b = 45
0b = 0

which are solved by a = 2.5 and b = 3 to finally get:

A =

[
2.5 0
0 3

]
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(b) (4 points) Rotation is also important to properly align a filter. Say the user’s head is tilted 30° cloc-
kwise, resulting in the anchor points being at~r1,~r2 and~r3 (see Figure 8.3). Derive a linear transfor-
mation matrix B that appropriately rotates the default anchor points to match the user’s head.
Precisely, the derived matrix should achieve B~pi =~ri for all i ∈ {1,2,3}. If this is not possible,
prove that it is not possible.

Figure 8.3: Rotation by 30° clockwise.

Solution: This is a rotation by −30° counter-clockwise, which by the rotation formula we learned in
class is:

B =

[
cos(−30) −sin(−30)
sin(−30) cos(−30)

]
=

[
cos(30) sin(30)
−sin(30) cos(30)

]
=

[ √
3

2
1
2

−1
2

√
3

2

]
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(c) (2 points) Filters should also work on reflections! Vasuki has a mirror positioned as shown in Fi-

gure 8.4. The mirror results in Vasuki’s anchor points to be at ~v1 =

[
−5
15

]
,~v2 =

[
−15
15

]
, and ~v3 =[

−10
0

]
. Derive a linear transformation matrix C that appropriately reflects the default anchor

points to match Vasuki’s reflection’s face. Precisely, the derived transformation should achieve
C~pi =~vi for all i ∈ {1,2,3}. If this is not possible, prove that it is not possible.

Figure 8.4: Vasuki’s face mirrored.

Solution: We solve the systems of linear equations[
a b
c d

][
5
15

]
=

[
−5
15

]
,

[
a b
c d

][
15
15

]
=

[
−15
15

]
,

[
a b
c d

][
10
0

]
=

[
−10

0

]
which yield the following equations 

5a+15b =−5
5c+15d = 15

15a+15b =−15
15c+15d = 15

10a =−10
10c = 0

which are solved by a =−1,b = 0,c = 0 and d = 1 to finally get:

C =

[
−1 0
0 1

]
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(d) (2 points) When the user’s head that is both rotated 30° clockwise and then reflected in the mirror,
the resultant anchor points are ~w1,~w2, and ~w3 (see Figure 8.5). We would like to derive a linear
transformation matrix D that transforms the default anchor points to the user’s head in this scenario.
Precisely, the derived matrix should achieve D~pi = ~wi for all i ∈ {1,2,3}. Give an expression for D
in terms of B and C (you don’t have to explicitly calculate the matrix D). If this is not possible,
prove that it is not possible.

Figure 8.5: Rotation by 30° clockwise followed by mirroring.

Solution:
Order matters! You have to multiply them sequentially from the left.
Thus, the transformation matrix for a rotation by ∠30 clockwise followed by a reflection would be
D = CB.

D =

[
−1 0
0 1

][ √3
2

1
2

−1
2

√
3

2

]
=

[
−
√

3
2 −1

2
−1

2

√
3

2

]
If you multiply them in the opposite order, you get a reflection first and then a rotation by 30° cloc-
kwise!
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(e) (4 points) Fil decides that he wants to design his own Snapchat filter that will take just the three
default anchor points on a user’s face and have it offset the user’s body by translation along the x
axis by 10 units of length. Fil’s desired transformation results in the anchor points being located at

~f1 =

[
15
15

]
, ~f2 =

[
25
15

]
, and ~f3 =

[
20
0

]
(see Figure 8.6). Derive a linear transformation matrix E

that transforms the default anchor points to Fil’s anchor points after translation. Precisely, the
derived matrix should achieve E~pi = ~fi for all i ∈ {1,2,3}. If this is not possible, prove that it is
not possible.

Figure 8.6: The “Fil”-ter.

Solution:
Non-trivial translation is not a linear transformation. To see this, let’s assume by contradiction that
the requested translation TE is a linear transformation (equivalent to saying that E exists: TE(~x) =
E~x). Note that ~p2 = ~p1 +~p3. Then we know that since TE is a linear transformation, we can write[

25
15

]
= ~f2

desired︷︸︸︷
= TE(~p2)

~p2=~p1+~p3︷︸︸︷
= TE(~p1 + ~p3)

linearity︷︸︸︷
= TE(~p1) + TE(~p3)

desired︷︸︸︷
= ~f1 + ~f3 =

[
35
15

]
. This is a

contradiction. Therefore TE can’t be a linear transformation.
The same proof can be written in matrix form as follows. Let’s assume by contradiction that such a ma-

trix E exists. Note that ~p2 =~p1+~p3. Therefore, we can write
[

25
15

]
= ~f2

desired︷︸︸︷
= E~p2

~p2=~p1+~p3︷︸︸︷
= E(~p1 +~p3)

distributivity︷︸︸︷
= E~p1 +E~p3

desired︷︸︸︷
= ~f1 +~f3 =

[
35
15

]
. This is a contradiction. Therefore the matrix E can’t exist.

For fun: there’s actually a clever way of linearizing shifts by adding another component to the vectors,
which you can read about on Wikipedia. However, the way we phrased the problem is that you can’t
perform that trick because we demanded that the derived matrix satisfies E~pi = ~fi for all i ∈ {1,2,3}
and ~pi doesn’t have an additional component besides the x and y coordinates.
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9. 16A Hogwarts Edition (10 points)
After seeing its success at Berkeley, Hogwarts has decided to add EE16A to its course offerings this semes-
ter! You are attending one of their pilot discussion sections on matrix transformations and eigenvalues. In
order to teach these concepts, your TA (Hermitian Ranger) has provided a set of cubes. These cubes are
matrices that perform a transformation on your position in the coordinate system of your classroom. When
the cube is dropped at your feet, it transports you to some new location based on your current one. Each
cube can be modeled with a different matrix transformation T such that T~xi =~x f where ~xi is your
initial position and~x f is your new position after dropping the cube.

(a) (2 points) You are given a yellow cube to experiment with. The matrix associated with the yellow

cube is Y, and your current position in the classroom is
[

2
−3

]
. After dropping the yellow cube, you

find yourself at position
[
−2
3

]
. Find one of the eigenvalues of Y, λ , and an eigenvector associated

with λ . Note that since the yellow cube is given to you, you can’t pick an arbitrary Y if you can’t
uniquely determine Y.
Solution:

The only acceptable answer is λ1 =−1 and any vector~v1 ∈ span
{[

2
−3

]}
except for~0.

This is straightforward from the problem statement: we know that Y
[

2
−3

]
=

[
−2
3

]
= (−1)

[
2
−3

]
(which is the definition of an eigenvalue/eigenvector pair).

(b) (6 points) You now start from a new location, ~d =

[
4
3

]
. Your TA presents to you a brown cube B and

two green cubes, G1 and G2. She says that you need to use one green cube and the brown cube one

after the other, such that at the end, you are back at your starting point ~d =

[
4
3

]
. Table 9.1 lists the

eigenvalue/eigenvector pairs of each of the three cubes in this part. Which of the two green cubes
would you use to achieve this? Prove mathematically that your answer is correct.
Hint 1: You do not have to explicitly write out the matrices.
Hint 2: In this part, the order in which you use the cubes does not matter.

Table 9.1: Cubes and their eigenpairs.
Green Cubes Eigenpairs Brown Cube Eigenpairs

G1

(
2,
[

1
−3

])
,

(
−0.5,

[
1
1

])
B

(
0.5,

[
−1
1

])
,

(
1,
[

2
0

])
G2

(
1,
[

2
0

])
,

(
2,
[
−1
1

])
Solution:
Use G2 and B. These would work for any starting location because they are inverses of each other. We
can tell that one is the inverse of the other because they share the same eigenvectors and because the
corresponding eigenvalues are reciprocals of each other. The proof for this is as follows:

Let’s stack the eigenvectors of B in a matrix: V =

[
−1 2
1 0

]
, then we know that:
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B = V
[

0.5 0
0 1

]
V−1

Note that the columns of V are also the eigenvectors of G2, so we can write

G2 = V
[

2 0
0 1

]
V−1

Let’s verify that G2 and B are inverses.

G2B = V
[

2 0
0 1

]
��
�V−1︸ ︷︷ ︸

G2

�V
[

0.5 0
0 1

]
V−1︸ ︷︷ ︸

B

= V
���

���
���:

I[
2 0
0 1

][
0.5 0
0 1

]
V−1 =��

��:
I

VV−1 = I

Similarly

BG2 = V
[

0.5 0
0 1

]
�
��V−1︸ ︷︷ ︸

B

�V
[

2 0
0 1

]
V−1︸ ︷︷ ︸

G2

= V
��

���
���

�:
I[

0.5 0
0 1

][
2 0
0 1

]
V−1 =��

��:
I

VV−1 = I

Since BG2 = I and G2B = I, B must be the inverse of G2 and vice versa.
This implies: BG2~d = ~d and we are back where we started as requested.

(c) (2 points) Would the same choice of green cube from part (b) still work if you started from a
different location? Justify your answer.
Solution:
Since G2 and B are inverses of each other, you will always land at wherever you started no matter
what.
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10. Aww, nuts! (18 points)

In all of your spare time outside of EE 16A, you have started working as a server at San Francisco’s newest
bougie chic boutique restaurant, “Brasserie E224A: The Peanut Gallery,” featuring peanut-infused dishes
from around the world. One hipster feature of the restaurant’s kitchen is a “peanut sensor” used to prevent
delivering plates with allergens to people with peanut allergies. In the figures, each sensor measurement
is represented by an arrow, and the output measurement (labeled at the end of the arrow) is equal to the
sum of the individual dish readings. For illustration purposes only, Figure 10.1 shows an example of a
measurement b that satisfies p1 + p2 + p3 = b.

bp1 p2 p3

Figure 10.1: Example reading of 3 dishes yielding measurement b for illustration purposes only.

Formatting Your Answer: In this problem, whenever you are asked to find all solutions for a vector of

variables, say ~p =

p1
p2
p3

, present the answer in vector format. Examples of acceptable vector formats are:

• ~p =

1
2
3

 . • ~p =

 1−3β

2−α +2β

3+α

 ,∀α,β ∈ R. • ~p =

1
2
3

+α

 0
−1
1

+β

−3
2
0

 ,∀α,β ∈ R.

(a) (2 points) In your first order, there are two dishes. You place them in the peanut sensor as depicted in
the following figure (Figure 10.2):

b

p1 p2

Figure 10.2: Order up! First order.

Let ~p =

[
p1
p2

]
represent the peanut content in both dishes. Given that the result of your peanut measu-

rement is b, find all possible solutions for ~p in terms of b and any free variables, if needed.
Solution:

~p =

[
b
α

]
,α ∈ R

Because the measurement only measures p1, the value of p2 can be anything and still fulfill the original
b measurement. [

1 0
]
~p = b
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This implies that ~p =

[
b
0

]
+α

[
0
1

]
, where

[
b
0

]
is the particular solution and α

[
0
1

]
is the homogeneous

solution, giving us p1 = b and p2 = α,α ∈ R.
(b) (2 points) Using the same order from part (a). Draw the line that represents all possible solutions

for ~p for b = 0 on the axes below (Figure 10.3) and label the line b = 0. Then, on the same set of
axes, plot the line that represents all possible solutions for ~p for b = 1 and label the line b = 1.

1

1

p1

p2

Figure 10.3: Plot the possible peanut content solutions.

Solution:

b = 1 :
[

1
α

]
,α ∈ R

b = 0 :
[

0
α

]
,α ∈ R

—
We plot those to get:

1

1

b = 0 b = 1 p1

p2

Figure 10.4: Solution to the possible peanut solutions.
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(c) This part of the problem consists of two sub-parts (c)i. and (c)ii.. Only for both of these sub-parts do
we know the following two pieces of extra information. First, the chef now tells you that, for the same
order as in parts (a) and (b), one dish contains peanuts, and the other dish has no peanuts. Second,
you set the sensor to work as follows: 1) A dish with peanuts will yield a reading of 1; and 2) a dish
without peanuts will yield a reading of 0.

i. (4 points) Now find all possible solutions for ~p =

[
p1
p2

]
for both cases when b = 0 and b = 1.

b = 0 b = 1

Solution:
In essence, the new information in this part adds an extra equation p1 + p2 = 1.
Our new system of linear equations is now[

1 1 1
1 0 b

]
Putting this matrix in reduced row echelon form and solving for ~p would result in a solution.[

1 0 b
0 1 1−b

]
=⇒

{
p1 = b

p2 = 1−b

~p =

[
b

1−b

]
=⇒


~p =

[
1
0

]
,b = 1

~p =

[
0
1

]
,b = 0

There are only two possible solutions:
[

1
0

]
and

[
0
1

]
for b = 1 and b = 0, respectively.

ii. (1 point) Given the new information presented in this part, is the single measurement b = 0 or
b = 1 now sufficient to uniquely determine which of the two dishes in the first order has peanuts?
Circle your answer.
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YES NO

Solution:
Yes. In part (c), we have a unique solution for each of the cases where b = 0 and where b = 1.

(d) (5 points) Now it’s time for your second order. This one has four dishes:

b1

b2

p1 p2

p3 p4

Figure 10.5: Second order!

Let ~p =


p1
p2
p3
p4

 represent the peanut content in the four dishes. Given the two measurements b1 and b2,

find all possible solutions for ~p in terms of b1, b2, and any free variables, if needed.
Solution:
For four dishes, we do the same process we did for two dishes: to find all possible solutions, solve for
a particular solution and the homogeneous solution.[

1 1 0 0 b1
1 0 1 0 b2

]
∼
[

1 0 1 0 b2
0 1 −1 0 b1−b2

]
We see from the reduced row echelon form that our pivots correspond to p1 and p2, meaning our
other variables p3 and p4 are free variables. For ease, we set p3 = p4 = 0, resulting in the following
equations: {

p1 + p3 = b2

p2− p3 = b1−b2

p3=0−−−→

{
p1 = b2

p2 = b1−b2

This gives us a particular solution ~pp:

~pp =


b2

b1−b2
0
0


For the general solution, we solve the same augmented matrix for~b = 0.[

1 1 0 0 0
1 0 1 0 0

]
Similarly, p3 = α and p4 = β are free variables.{

p1 + p3 = 0

p2− p3 = 0
=⇒

{
p1 +α = 0

p2−α = 0
=⇒

{
p1 =−α

p2 = α
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and so we get the following general homogeneous solution:

~ph =


−α

α

α

β

= α


−1
1
1
0

+β


0
0
0
1

 ,∀α,β ∈ R

Finally, we combine our particular and homogeneous solutions to get a complete solution of our ~p
vector:

~p = ~pp +~ph =


b2

b1−b2
0
0

+α


−1
1
1
0

+β


0
0
0
1

 ,∀α,β ∈ R

(e) (4 points) Only for this part, the chef now tells you that, for the same order as in part (d), it is one of
the four following layouts of peanut dishes with each set of four dishes containing exactly three peanut
dishes (see Figure 10.6). Moreover, only for this part, you once again set the sensor to work as follows:
1) A dish with peanuts will yield a reading of 1; and 2) a dish without peanuts will yield a reading of
0.

Case 1 Case 2 Case 3 Case 4

Figure 10.6: Possible Peanut Portioning.

For each of the given arrangements in Figure 10.6, based on the measurement scheme in Figure 10.5,
fill in the values for the measurements b1 and b2 in the table below.

Case 1 Case 2 Case 3 Case 4
b1

b2

Solution:
Following the scheme above, the resulting scans for each case are as follows:

Case 1 Case 2 Case 3 Case 4
b1 2 2 1 1
b2 2 1 2 1
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PRINT your name and student ID:

11. StateRank Car Rentals (21 points)

You are an analyst at StateRank Car Rentals, which operates in California, Oregon, and Nevada. You are
hired to analyze the number of rental cars going into and out of each of the three states (CA, OR, and NV).

The number of cars in each state on day n∈ {0,1, . . .} can be represented by the state vector~s[n] =

sCA[n]
sOR[n]
sNV[n]

.

The state vector follows the state evolution equation ~s[n+ 1] = A~s[n],∀n ∈ {0,1, . . .}, where the transition
matrix, A, of this linear dynamic system is

A =

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10

 .
(a) (3 points) Use the designated boxes in Figure 11.1 to fill in the weights for the daily travel dynamics

of rental cars between the three states, as described by the state transition matrix A.
Note the order of the elements in the state vector~s[n].

CA

OR NV

�

� �
�

�
�
�

� �
Figure 11.1: StateRank Rental Cars Daily Travel Dynamics.

Solution:
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CA

OR NV

7
10

1
10

2
10

1
10

6
10

3
10

1
10

1
10 8

10

Figure 11.2: StateRank Rental Cars Daily Travel Dynamics – Solution.
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PRINT your name and student ID:

A copy of the state transition matrix for reference: A =

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10



(b) (2 points) Suppose the state vector on day n = 4 is~s[4] =

100
200
100

. Calculate the state vector on day

5,~s[5].
Solution: 7/10 1/10 1/10

1/10 6/10 1/10
2/10 3/10 8/10

100
200
100

=

 70+20+10
10+120+10
20+60+80

=

100
140
160



(c) (2 points) We want to express the number of cars in each state on day n as a function of the initial
number of cars in each state on day 0. That is, we write~s[n] in terms of~s[0] as follows:

~s[n] = B~s[0]

Express the matrix B in terms of A and n.
Solution:

~s[n] = A~s[n−1] = A2~s[n−2] = A3~s[n−3] = · · ·= An~s[n−n] = An~s[0]

B = An
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PRINT your name and student ID:

A copy of the state transition matrix for reference: A =

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10


(d) (4 points) We denote the eigenvalue/eigenvector pairs of the matrix A byλ1 = 1,~u1 =

 50
40
110

 ,

λ2,~u2 =

 0
−10
10

 , and

λ3,~u3 =

−10
0
10

 .

Find the eigenvalues λ2 and λ3 corresponding to the eigenvectors ~u2 and ~u3, respectively. Note
that since λ1 = 1 is given, you don’t have to calculate it.
Solution:
Recall that if ~u,λ are an eigenpair of a matrix A, then A~u = λ~u. By left-multiplying the eigenvectors
by A, we get:

i.

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10

 0
−10
10

=

 0
−5
5

= 0.5 ·

 0
−10
10

, which means that λ2 = 0.5 = 1
2 .

ii.

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10

−10
0
10

=

−6
0
6

= 0.6 ·

−10
0

10

, which means that λ3 = 0.6 = 3
5 .

(e) (2 points) For the given dynamics in this problem, does a matrix C exists such that~s[n−1] = C~s[n],
for n ∈ {1,2, . . .}? Justify your answer.
Solution:
Yes. The matrix A is invertible because no eigenvalue is equal to 0.
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PRINT your name and student ID:

A copy of the state transition matrix for reference: A =

7/10 1/10 1/10
1/10 6/10 1/10
2/10 3/10 8/10


(f) (8 points) Suppose that the initial number of rental cars in each state on day 0 is

~s[0] =

7000
5000
8000

= 100~u1−100~u2−200~u3,

where~u1,~u2 and~u3 are the eigenvectors from part (d).
After a very large number of days n, how many rental cars will there be in each state?
That is, i) calculate

~s∗ = lim
n→∞

~s[n]

and ii) show that the system will indeed converge to~s∗ as n→ ∞ if it starts from~s[0].
Hint: If you didn’t solve part (d), the eigenvalues satisfy λ1 = 1, |λ2|< 1 and |λ3|< 1.
Solution:
We know that~s[n] = An~s[0]. We also know that~s[0] = 100~u1−100~u2−200~u3.
Therefore, we can write:

~s[n] = An~s[0]

= An (100~u1−100~u2−200~u3)

= 100An~u1−100An~u2−200An~u3

= 100λ
n
1~u1−100λ

n
2~u2−200λ

n
3~u3

From that, we can write:

lim
n→∞

~s[n] = lim
n→∞

100λ
n
1~u1−100λ

n
2~u2−200λ

n
3~u3

Since |λ2|< 1 and |λ3|< 1, we know that:

lim
n→∞

(−100λ
n
2~u2−200λ

n
3~u3) =~0

From that and the fact that λ1 = 1, we are left with:

lim
n→∞

~s[n] = lim
n→∞

100λ
n
1~u1

= lim
n→∞

100 ·1n~u1

= 100~u1

=

 5000
4000
11000
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PRINT your name and student ID:

Extra page for scratchwork.
If you want any work on this page to be graded, please refer to this page on the problem’s main page.
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