EECSI6A DIS EC
Interestwy new circuit $\rightarrow$ Timer circuit / oscillator
Use op amps to produce a square wave
(1 )More analysis of op amp circuits (identify topologies)
(2) Two new topologies
$\{\rightarrow$ integrator - integrate voltages
$\rightarrow$ Schmittitrigger - make a better, noise resistant comparator
Today: Analysis of the following chat


Any recognizable boles? inverting amp

$$
v_{2}=-v_{1}
$$



$$
G R \# 2 \text { if } N F B \rightarrow u^{+}=u^{-}
$$

$$
U^{-}=O V
$$

$$
\left.\begin{array}{rl}
\frac{V_{3}-o v}{R}=i_{c} & =C \frac{d}{d t} v_{c} \\
& =C \frac{d}{d t}\left(0-v_{1}\right) \\
\frac{V_{3}}{R} & =-C \frac{d}{d t} v_{1} \\
{\left[\frac{d v_{1}}{d t}\right.} & =-\frac{1}{R C} v_{3} \\
\rightarrow v_{1}(t) & =-\frac{1}{R C} \int_{0}^{t} v_{3}(t) d t+v_{t}(0)
\end{array}\right]
$$

$\rightarrow$ This op amp circuit calculatesan integral! Integrator op amp
$V_{3}$ is constant for this problem
$\rightarrow V_{1}$ is linear with time

$$
\begin{array}{cc}
V_{1}=\frac{-V_{3} t}{R C} & {[\Omega][F]}
\end{array} \quad \begin{aligned}
& Q=C V \\
& \frac{Q}{V}=C \\
& \\
&
\end{aligned}
$$

effection
of initial) charge that might he on $=$ seconds


$$
V_{1}=-\frac{V_{3}}{R C} t+V_{1}(0)
$$

(assuming $v_{3}$ is constant)

$$
\begin{aligned}
& V_{2}=-V_{1} \\
& V_{2}=\frac{V_{3}}{R C} t-V_{1}(0) \\
& V_{2}=\frac{V_{3}}{R C} t+V_{2}(0) \Leftarrow
\end{aligned}
$$

$$
R=16 \pi
$$



$$
C=1 \mu F
$$ $R C=1 \mathrm{msec}$ $\Omega \cdot F=$ sec

every ore ms, increase $V_{2}$ lon $V_{3}$ vols

of $V_{3}=I V$ what is $u^{+}$?
$A: u^{+}=\frac{1}{2} V \quad$ why? : Voltage divider

$$
\begin{aligned}
u t & =\frac{16 \Omega}{1(\Omega+16 \Omega} \cdot 1 \mathrm{~V} \quad u^{t}-\frac{v_{3}}{u^{2}}=1 \mathrm{l} q \\
& =\frac{1}{2} v
\end{aligned}
$$

If $V_{3}=-\sqrt{ } V$ what is $u^{+}$? $\quad U^{+}=-1 / 2 v$ How does $v_{2}$ affect $v_{3}$ ?

we only switch output when we exceed $1 / 2 /-\frac{1}{2}$ not as sensitive as a comp.


$$
\begin{aligned}
& V_{2}(0)=0 V \\
& V_{3}(0)=W
\end{aligned}
$$

$$
V_{2}(t)=\frac{V_{3}}{R C} t+V_{2}(0)
$$

$$
v_{2}(t)=\frac{-1 v}{1 m s} t+\frac{1}{2} V
$$

$$
=\frac{1 V}{1 m s} t+0
$$

Conclusion: can get a square ware B
a triangle wave

Error correction: sawtooth is:


This is a triangle wave:


Period of the waves is determined by RC

