EECSIGA DIS 7 B

- OMP Example: OMP as iterated least squares
- Past final problem with OMP
* Discussion checkoff (if you still need it)

$$
M \vec{x}=\vec{y}
$$

known known
$\vec{x} \rightarrow$ want to find

$$
3\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \underset{\vec{y}}{\sim} \underset{\substack{5 \\
1 \\
1 \\
y} \vec{x}=\vec{b}}{\left[\begin{array}{l}
\text { wide } \\
\\
\end{array} \vec{x} \approx \vec{b}\right.}
$$

(a) Why is $\vec{x}^{\text {not }}$ valuable for directly?

GE , LS
(b) $L S: \hat{x}=\left(M^{\top} M\right)^{-1} M^{\top} \vec{y}$

GE: Free variable - might get infinitely many sol. or Inconsistent systems
Not $\quad r h(M) \leq 3$

$$
\rightarrow \text { no sol. }
$$

(C) OMP algorithm
M, \vec{y} Find \hat{x}

$$
M=\left[\begin{array}{cc}
\frac{1}{1} & 1 \\
m_{1}, & , \\
1 & 1 \\
1 & 1
\end{array}\right] \quad \vec{e}_{0}=\frac{\lambda}{y}
$$

(1)

Use inner product to figure out which vector is closest (largest $\left|\left\langle\vec{m}_{i}, \vec{y}\right\rangle\right|$)
(2) Do least squares on chosen $\vec{m}_{i}\left(\vec{m}_{1}\right)$

$$
M_{1} \hat{x}_{1}=\left[\vec{m}_{1}\right] \hat{x}_{1} \tilde{\sim}[\vec{y}] \rightarrow \vec{m}_{1} \hat{x}_{1} \rightarrow \hat{y}_{1}
$$

Least sq. works hesause $\overrightarrow{m i}_{1}$ is linindep
(3) Compute aurar from est. and ty to explain ever with other vectors
$\hat{y_{l}} \mathbb{R}_{\overrightarrow{1}}^{\vec{m}_{1}} \quad \hat{y}_{1}$-firs test. of \bar{y}

(4)

$$
\text { 4) } M_{2} \hat{x}_{2}=\left[\begin{array}{cc}
1 & 1 \\
\vec{m}_{1} & \vec{m}_{2} \\
1 & 1
\end{array}\right] \hat{x_{2}} \approx \vec{y}
$$ Iterating

Q: Do we choose lin def col at any point?
$A \cdot N c$

Doing list rus
with $\left[\begin{array}{cc}1 & \frac{1}{m_{2}} \\ 1 & m_{2} \\ 1 & 1\end{array}\right] \hat{x}_{2} \approx \vec{\sim}$

$$
\overrightarrow{e_{2}}=\overrightarrow{0}
$$

$\int_{\rightarrow m_{2}} \vec{y}$
We can stop when
(1) Hit a certain \# of non-zevo entries (sparsity conditions)
(2) Error magnimale is acceptably small
(1) Compute inner products

$$
\left.\begin{array}{l}
\left\langle\left[\begin{array}{l}
s \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=5\right. \\
\left\langle\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\rangle=3 \\
\left\langle\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]\right\rangle=12\left[\begin{array}{l}
\vec{m}_{3}
\end{array}\right\} \\
\left\langle\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\rangle=b
\end{array}\right\}
$$

$$
\begin{aligned}
& \vec{m}_{3} \hat{x}, \vec{z} \vec{y}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{x}_{1}=\left(\vec{m}_{3}{ }^{\top} \vec{m}_{3}\right)^{-1} \vec{m}_{3}^{\top} \vec{y}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right)^{-1}(12)\right. \\
& =8^{-1}(12) \\
& =\frac{12}{8}=\frac{3}{2} \\
& \vec{X} \underset{\sim}{\sim}\left[\begin{array}{c}
0 \\
0 \\
3 / 2 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\vec{m}_{3} \vec{m}_{4}\right] \hat{x}_{2} x_{\infty} \vec{y}} \\
& {\left[\begin{array}{ll}
2 & 1 \\
2 & 0 \\
0 & 1
\end{array}\right] \hat{x}_{2} \approx\left[\begin{array}{l}
S \\
1 \\
1
\end{array}\right]} \\
& \hat{x}_{2} \approx\left(M_{2}^{T} M_{2}\right)^{W} M_{2}^{T} \vec{y} \\
& =\left(M_{2}^{\top} M_{2}\right)^{-1}\left[\begin{array}{ll}
2 & 2
\end{array} 0 \begin{array}{l}
1 \\
1
\end{array} 010\right]\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] \\
& =\left(M_{2}^{\top} H_{2}\right)^{-1}\left[\begin{array}{l}
12 \\
6
\end{array}\right]=\left[\begin{array}{l}
\hat{x}_{216} \\
\hat{x}_{22}
\end{array}\right] \\
& =\left[\begin{array}{c}
2-1 \\
-2+4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] E \\
& \vec{x} \underset{\sim}{\sim}\left[\begin{array}{l}
0 \\
0 \\
\hat{x}_{21} \\
\hat{x}_{22}
\end{array}\right] \\
& \text { stop have because. } \\
& 2 \text { non-zewo entries } \\
& M_{2}^{\top} M_{2}=\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
8 & 2 \\
2 & 2
\end{array}\right] \Leftrightarrow \\
& \left(M_{2}^{\top} M_{2}^{-1}\right)=\frac{1}{16-4}\left[\begin{array}{cc}
2 & -2 \\
-2 & 8
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{6} & -\frac{1}{6} \\
-\frac{1}{6} & \frac{2}{3} \\
6
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\hat{x}_{2}=\left[\begin{array}{l}
1 \\
z
\end{array}\right] \\
\hat{y}_{2}=M_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
z & 1 \\
z & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
\end{gathered}
$$

$Q:$ What if $\vec{m}_{1}=\alpha \vec{m}_{3}+\beta \vec{m}_{4}$

$$
A: \quad\left\{\begin{aligned}
\left\langle\vec{e}, \vec{m}_{3}\right\rangle & =0 \\
\left\langle\vec{e}, \vec{m}_{4}\right\rangle & =0 \\
\Rightarrow\left\langle\vec{e}, \vec{m}_{1}\right\rangle & =\left\langle\vec{e}, \alpha \vec{m}_{3}+\beta \vec{m}_{4}\right\rangle \\
& =x\left\langle\vec{e}, \vec{m}_{3}\right\rangle+\beta\left\langle\vec{e}, \overrightarrow{m_{4}}\right\rangle \\
& =0
\end{aligned}\right.
$$

Caveat: we've using inner product os a measure of similarity
Q: Inner product is not. a good measure ot sim?
A : Yeah -want to normalize
want: columns of M (signals) to he normalized oval sawerarm
[2] OMP problem- Fall' 's final
Don't know our numerical rectors $(M, \vec{b}(\vec{y})$
\rightarrow Inner products
\rightarrow Can we still do OMP?
(a.) Which of $\vec{c}_{1}, \ldots, \vec{c}_{5}$ has largest inner prod. w/ \vec{b} ?

$$
\begin{aligned}
& \left\langle\vec{c}_{1}, \vec{b}\right\rangle=1 \\
& \left\langle\vec{c}_{2}, \vec{b}\right\rangle=-5
\end{aligned}
$$

$\left\langle\vec{c}_{4}, \vec{b}\right\rangle=6 \mid \rightarrow$ select \vec{c}_{4} to do OMP with

(c) residue - error

$$
\begin{aligned}
& \vec{e}=\vec{b}-\vec{b}_{p} \\
& \left\langle\vec{e}, \overrightarrow{c_{i}}\right\rangle
\end{aligned}=\left\langle\overrightarrow{b_{0}}, \overrightarrow{c_{i}}\right\rangle-\left\langle\vec{b}_{p}, \overrightarrow{c_{i}}\right\rangle .
$$

(d)
cont

$$
\begin{aligned}
& \hat{x}=\left(M_{2}^{\top} M_{2}\right)^{-1} M_{2}^{\top} \vec{b} \\
& \hat{x}=\left[\begin{array}{l}
\hat{x_{a}} \\
\hat{x}_{c}
\end{array}\right] \\
& =\left(\left[\begin{array}{cc}
\frac{1}{c_{4}} & \vec{c}_{1} \\
1 & 1
\end{array}\right]^{\top}\left[\begin{array}{cc}
\vec{c}_{4} & \vec{c}_{4} \\
1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
1 & 1 \\
\vec{c}_{4} & \vec{c}_{1} \\
1 & 1
\end{array}\right]^{\top} \vec{b} \\
& =\left(\left[\begin{array}{ll}
-\vec{c}_{4}^{\top} \\
-\vec{c}_{1}^{\top}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
\vec{c}_{4} & \vec{c}_{1} \\
1_{4} & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
\vec{c}_{4}^{\top} \vec{b} \\
\vec{c}_{4}^{\top} \vec{\phi}
\end{array}\right] \\
& =\sqrt{\left[\begin{array}{ll}
\vec{c}_{4}^{\top} \vec{c}_{4} & \vec{c}_{4}^{\top} \vec{c}_{1} \\
\vec{c}_{1}^{\top} \vec{c}_{4} & \vec{c}_{1}^{\top} \vec{c}_{1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\vec{c}_{4}^{\top} \vec{b} \\
\vec{c}_{1}^{\top} \vec{b}
\end{array}\right]=\left[\begin{array}{l}
\hat{x}_{a} \\
\hat{x}_{c}
\end{array}\right]}
\end{aligned}
$$

Q: when to not use all
\rightarrow when rot a sparse prob.
(e) \Rightarrow sub in \#s, solve

