
EECS 16A Designing Information Devices and Systems I
Spring 2022 Lecture Notes Note 16

16.1 Introduction to Capacitive Touchscreen
We’ve seen how a resistive touchscreen works by using the concept of voltage dividers. Essentially, for a
resistive touchscreen, we map the value of analog voltage to the position touched. Another way to design
a touchscreen is to break the screen down into a bunch of pixels. At each one of the pixels, we can detect
whether the finger is touching it or not. This allows the touchscreen to sense multiple touch points at a time.
In order to do this efficiently, we need a new element: capacitors. One of the nice features of the capacitive
touchscreen is that you don’t have to bend anything like we did for the resistive touchscreen — the presence
or absence of the finger can modify the capacitance directly!

16.2 Capacitor
A capacitor is a circuit element that stores charge. Capacitors have an associated quantity called capaci-
tance, which represents how much charge can be stored for a given amount of voltage. We usually denote
capacitance with C. Let’s represent voltage across the capacitor as VC and the charge stored on the capacitor
as Q. This relation is often written as:

Q =CVC. (1)

When we draw circuits, the symbol for a capacitor is:

C

The unit of capacitance is Farad (F). A capacitor with capacitance of 1F (Farad) stores 1C (cCulomb) of
charge across is when it has 1V (Volt) of potential energy across its terminals.

Let’s examine the defining relationship of a capacitor:

Q =CVC. (2)

Differentiating both sides with respect to t and assuming a constant capacitance, we have

dQ
dt

=
dCVC

dt
=C

dVC

dt
. (3)
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However, we know that current I = dQ
dt . Hence,

I =C
dVC

dt
. (4)

Thus, the current through a capacitor is the product of the capacitance and the rate of change of the voltage
across the capacitor. This yields the following graph, with slope equal to C:

slope=C

dVC
dt

I

An important implication of this is that current is only flowing through the capacitor if the voltage
across the capacitor is changing with time. If the voltage is no longer changing, then the current through
the capacitor will equal 0.

How can we solve for the voltage across the capacitor? In other words, how do we find VC(t)? There are
many ways to solve Equation 4, but we will use separation of variables and then integrate both sides, shown
below. Note that it’s okay if you haven’t seen this technique before, it is not required for this class.

I =C
dVC

dt
. (5)

Idt =CdVC (6)∫ t

0
Idt =

∫ VC

0
CdVC (7)

To integrate the left-hand side, we assume that the current I is constant over time. When we integrate the
right-hand side, we must account for the initial voltage across the capacitor, VC(0).

It =C(VC(t)−VC(0)) (8)

VC(t) =
I
C

t +VC(0) (9)

This yields the following graph, with slope equal to I
C . Although Eq. 4 is fully general, Eq. 9 is only valid

when the current is constant over time.
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(0,V (0))

t

VC

Let’s see what happens when we connect a capacitor with a voltage source.

−
+VS

I

C
+

-
VC

We know that initially, charges are going to build up on the two plates — positive charges on the top plate
and negative charges on the bottom plate. Once enough charge has been stored, the voltage across the
capacitor becomes VC =VS; because the voltage can no longer increase past this point, the current I flowing
through the circuit becomes zero.

16.3 Capacitor Equivalence
Note that when we initially talked about equivalence it was in terms of I and V . But what about for capaci-
tors? Now we will specify equivalence in terms of I and dV

dt . That means we need to apply Itest and measure
dVtest

dt or apply dVtest
dt and measure Itest . Then we can calculate the equivalent capacitance:

Ceq =
Itest
dVtest

dt

Just like resistors, we can connect capacitors in series and in parallel. We’ll first focus on capacitor-only cir-
cuits, which means that we don’t need to find Thevenin/Norton equivalent circuits; it will just be a capacitor.

16.3.1 Capacitors in parallel
Given the following circuit:
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C1 C2

What is the equivalent capacitance? By analogy with our resistor case, we will try and apply a test voltage
to this circuit:

dVtest
dtC1 C2

i1 i2

Itest

i1 =C1
dVtest

dt

i2 =C2
dVtest

dt

Itest = i1 + i2 = (C1 +C2)
dVtest

dt
∴Ceq =C1 +C2

We can thus reduce our original circuit to:

C1 +C2

We find that in general, the equivalent capacitance of capacitors in parallel is the sum of their capacitance

16.3.2 Capacitors in series
Given the circuit:

C1 C2
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What is the equivalent capacitance here? By symmetry with the resistor case, let’s apply a test current and
measure the resulting voltage:

C1

C2

Itest

−

+

Vtest

iC1

iC2

u1

u2

From KCL, we know that all of the currents are equal.

iC1 = iC2 = Itest

For each capacitor, we plug in our I− dV
dt relationship:

iC1 = Itest =C1
du1

dt

iC2 = Itest =C2
d(u2−u1)

dt
=C2

(
du2

dt
− du1

dt

)
Next, we eliminate u1 from the equations above and rearrange.

du1

dt
=

Itest

C1
⇒ Itest =C2

du2

dt
−C2

C1
Itest

Itest =
C2

1+ C2
C1

du2

dt

Finally, we plug in that u2 =Vtest and solve for the equivalent capacitance with Ceq = Itest/
dVtest

dt

Itest =
C2

1+ C2
C1

dVtest

dt

⇒Ceq =
C2

1+ C2
C1

=
C1C2

C1 +C2

Note that this is the same as saying Ceq =C1 ‖C2. Remember that the ‖ operator is mathematical notation;
in this case, the capacitors are actually in series, but mathematically their equivalent circuit is found via the
“parallel resistor” operation.

We can thus reduce our original circuit to:
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C1C2
C1+C2

16.4 Capacitor Physics
Now that we know the properties of capacitors, let’s take a look at the underlying physics. This will be
useful when we want to build models for physical structures, such as our capacitive touchscreen. Remember
that the physics we teach in this course is not designed to be exact or fully detailed, but is close enough to
get us the understanding we need to create circuit models from physical structures.

What is the physical structure of a capacitor? Any two pieces of conductive material, typically metal, that
are separated by some other material that is not in general conductive (aka an insulator), forms a capacitor.

Note: What does this mean about you in the case of a capacitive touch screen? You’re a conductor!

If there is voltage across the two pieces of conductors, charges will build up on the surface of the capacitor.
As depicted below, when we apply voltage V across the two plates, positive charges build up on the (top)
surface of the plate connected to the positive terminal and negative charges build up on the (bottom) surface
of the plate connected to the negative terminal.

+ ++

- --

+ V

-

Let’s try to get some intuition on capacitors by drawing an analogy between capacitors and water buckets
— simply put, we can think of a capacitor as a bucket. The more water (charge) you put in the bucket, the
higher the water level (voltage) would be. The water level in the bucket is determined by its dimensions.
Similarly, the capacitance is set by the dimensions of the conductor plates and some properties of the material
separating them. Please note that the water analogy is imperfect for many cases in electrical engineering- be
careful not to try and extend or use it arbitrarily.

In particular, the capacitance of a capacitor is:

C = ε
A
d

(10)
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where A is the area of the surface of the plates facing each other, d is the separation between the two plates
(illustrated below), and ε is the "permitivity" of the material between the plates. We can deduce that ε has
unit F/m. For example, if the material between the capacitors is air (vacuum), then ε = 8.85×10−12F/m.

A

d

When a capacitor is charged, there is voltage across it. What does this mean? This means that there is
energy stored in the capacitor. Why is there energy stored? Recall that like charges repel each other. So for
example if we take a positive charge and move it closer to another positive charge, we need to exert force
and thus supply energy to do so. Let’s now ask the question: when the capacitor is fully charged, how much
energy is stored in it? We know from previous lectures that the energy required to store an additional dQ
amount of charge when the voltage across the capacitor is VC is

dE =VCdQ. (11)

We also know that dQ =C×dVC. With this in mind, we have

dE =VC (C×dVC) =C×VC×dVC. (12)

Integrating both sides, we have ∫ E

0
dE =

∫ V

0
(C×VC)dVC =C

∫ V

0
VCdVC (13)

E =
1
2

CV 2. (14)

Hence, the energy stored in the capacitor after it’s fully charged is 1
2CV 2 where V is the voltage applied

across the capacitor. The charges across the capacitor cannot just disappear for no reason, and therefore the
energy continues to be stored - that means we can use this element as a tool to design circuits for measuring
stored charge/energy.

Let’s return to our capacitor equivalence models and try to gain some more physical intuition.

Physical Intuition of Parallel Capacitors:
Suppose we combine two capacitors in parallel as follows

C1 C2

A1 A2

d
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If we look at the combined capacitor above, its capacitance is equal to

Ceq = ε
A1 +A2

d
, (15)

which is equal to the sum of the capacitance of the two capacitors

Ceq = ε
A1 +A2

d
= ε

A1

d
+ ε

A2

d
=C1 +C2, (16)

This matches the equivalence equation for parallel capacitors! In other words, connecting capacitors in
parallel is analogous to summing the surface area of the two plates.

Physical Intuition of Series Capacitors:
If we take the following capacitor and draw a horizontal line in between, then it acts the same as two
capacitors connected in series

C2

C1
d

d2

d1

Assume that the surface area is A. Intuitively, we know that the equivalent capacitance should be smaller
than both C1 and C2 since the plates are farther from each other. We know that C1 = ε

A
d1

and C2 = ε
A
d2

. Let
the capacitance of the combined capacitor be Ceq. It satisfies

1
Ceq

=
1
ε

d1 +d2

A
=

1
ε

d1

A
+

1
ε

d2

A
=

1
C1

+
1

C2
. (17)

Hence, the equivalent capacitance is equal to

Ceq =
1

1
C1

+ 1
C2

=
C1C2

C1 +C2
. (18)

Notice that the examples above keep one physical dimension constant between the capacitors. This is not
really necessary to arrive at theses expressions for series and parallel capacitors. The expressions for equiv-
alent capacitance that we formally derived in Section 16.3 work for capacitors of arbitrary shape/values.

16.5 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. Given a parallel plate capacitor, you can increase the effective capacitance in the following way(s):

(a) Increasing the overlapping area of the two plates
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(b) Decreasing the distance between the two plates

(c) Using an insulator with a higher permittivity

(d) All of the above

2. True or False: Capacitors in series have an equivalent capacitance that is smaller than any of the
individual capacitances (assuming that all capacitances are positive capacitance).

3. True or False: Capacitors in parallel have an equivalent capacitance that is smaller than any of the
individual capacitances (assuming that all capacitances are positive).

4. True or False: Given the current through a capacitor, is it possible to determine the voltage across it
at time t?

5. Consider the circuit below. Find an expression for vout(t) in terms of Is, C1, C2, C3, C4, and t. Assume
that all capacitors are initially uncharged.

Is

C1

C2

C3

C4

+

−

vout

6. Find the equivalent capacitance between the terminals a and b in terms of C.
a

2C

2C

b

C

C C

7. What is the total energy stored in capacitors in the circuit below?
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−
+Vs C1

C2

C2
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