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EECS 16A Designing Information Devices and Systems I
Fall 2020 Final Exam – SOLUTIONS

1. Save Baby Yoda! (8 points)
Despite our best efforts, we have lost Baby Yoda to former agents of the Galactic Empire. Luckily we were
able to conceal a receiver in his locket, so now it’s time to save Baby Yoda using our 16A knowledge!

Baby Yoda has been delivered to an Imperial Star Destroyer. Rebel intel has provided us with access to their
internal communication beacons. The ship’s layout is 2-dimensional with 3 beacon locations specified in
Table 1.

Beacon Coordinates
Distance to
Baby Yoda

A (5,5)
√

20
B (2,3) 1
C (1,1) 2

Table 1: Data from Destroyer Beacons and their coordinates.
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Figure 1: Diagram of the Destroyer’s floor-plan with Beacon coordinates marked accordingly.

Explicitly write out a linear system of equations (in matrix-vector form) using the data above for

finding Baby Yoda’s location ~x =

[
x
y

]
. Draw a box around your final linear system, then solve for

Baby Yoda’s location. Nonlinear terms are not permitted in your final system of equations. You must
provide both the system and the location for full credit.

Solutions:
The three equations are:

[A] : (x−5)2 +(y−5)2 = x2 − 10x + 25 + y2 − 10y + 25 = 20 ,
[B] : (x−2)2 +(y−3)2 = x2 − 4x + 4 + y2 − 6y + 9 = 1 ,
[C] : (x−1)2 +(y−1)2 = x2 − 2x + 1 + y2 − 2y + 1 = 4 .
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Method A: We subtract equation [A] from the others to yield:

6x − 37 + 4y = −19
8x − 48 + 8y = −16

−→ 3x + 2y = 9
x + y = 4

−→
[

3 2
1 1

][
x
y

]
=

[
9
4

]
.

Method B: We subtract equation [B] from the others to yield:

−6x + 37 − 4y = 19
2x − 11 + 4y = 3

−→ 3x + 2y = 9
x + 2y = 7

−→
[

3 2
1 2

][
x
y

]
=

[
9
7

]
.

Method C: We subtract equation [C] from the others to yield:

−8x + 48 − 8y = 16
−2x − 11 − 4y = −3

−→ x + y = 4
x + 2y = 7

−→
[

1 1
1 2

][
x
y

]
=

[
4
7

]
.

All of these systems of equations are acceptable. In the following solution we will work from the Method A
system. From this stage there are three ways to solve for Baby Yoda’s location:

(1) Row Reduction: Use Gaussian elimination on your system.[
3 2 9
1 1 4

]
−→

[
3 2 9

2 ·1−3 2 ·1−2 2 ·4−9

]
−→

[
3 2 9
1 0 1

]
Thus x = 1. From here we can substitute into either equation: x+ y = 4 → y = 3.

(2) Inverse: Compute the inverse matrix, as per our formula for 2×2 matrices
[

a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
.

From this point it becomes a matter of matrix vector multiplication to identify ~x using the relation
A~x =~b →~x = A−1~b.[

3 2
1 1

]−1

=

[
1 −2
−1 3

]
−→ ~x =

[
1 −2
−1 3

][
9
4

]
=

[
9−8
−3+12

]
=

[
1
3

]
(3) Graphically: Using Figure 1, draw circles centered at each beacon with the appropriate radius from the

beacon data. Their intersection identifies Baby Yoda’s location.

The solution for Baby Yoda’s location is~x =
[

1
3

]
.
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2. Ultrasound Sensing with Op-Amps (14 points)

The transresistance amplifier is often used to convert a current from a sensor to a voltage. In this problem
we will use it to build an ultrasound sensor! When an ultrasonic wave hits our sensor, it generates a current,
iultra. Whenever no ultrasonic wave hits our sensor zero current is generated, so iultra = 0.
Note: An ideal op-amp is used in all subparts of this question. You can also assume that VDD =−VSS.

−

+

−
+ VREF

R

+

−

Vout

iultra

VDD

VSS

Figure 2: Transresistance sensor circuit

(a) (4 points) Calculate the output voltage, Vout, of the transresistance sensor circuit shown in Fig. 2,
as a function of the reference voltage, VREF, the sensor input current, iultra, and the resistor,
R, when an ultrasonic wave hits the sensor. Clearly show all your work and justify your answer.
Writing only the final expression will not be given full credit.
Solutions:
Since we have an ideal op-amp in a negative feedback circuit, we can first say that u− = u+ = VREF.
Next the current iultra must flow right though R due to KCL and the golden rules (no current can flow
into the op-amp). Thus we establish

Vout = u− − iultra R = u+ − iultra R = VREF − iultra R. �

(b) (5 points) Assume that the amplitude of the ultrasonic wave hitting the sensor is such that the current
iultra fluctuates from a minimum value of imin = 1 · 10−6A, to a maximum value of imax = 2 · 10−6A.
Also assume that the reference voltage is set to VREF = 1V. In this case, calculate the following:
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i. The maximum value of the resistor, R, so that the output voltage, Vout, does not drop below
0V. Clearly show all your work.

ii. Assuming you picked R = 250 · 103Ω (which may or may not be the correct answer to part (i)),
calculate the maximum value of the output voltage, Vout. Clearly show all your work.

Solutions:
From part (a) we identified the output voltage of our sensor circuit Vout = VREF − iultra R.

i. The worst-case scenario (in which the output voltage is most reduced) occurs for iultra = imax =
2 · 10−6A. If we include VREF = 1V and set our nonnegative condition on Vout, we identify the
restriction on R:

Vout = VREF − imax R ≥ 0 −→ R ≤ VREF

imax
=

1V
2 ·10−6A

= 500,000 Ω. �

ii. Based on our voltage formula, the highest Vout scenario now occurs for the low current condition
iultra = imin = 1 ·10−6A. From this point we now substitute into the Vout formula:

Vout = VREF − imin (250 ·103
Ω) = 1− (1 ·10−6A)(250 ·103

Ω) = 1−0.25 = 0.75V. �

(c) (5 points) Unfortunately, after a few hours of successful ultrasound sensing, our sensor got damaged.
It now constantly generates a huge background current, Idamage. So when an ultrasonic wave hits it, the
sensor produces Idamage + iultra, as shown in Fig 3(b). When no ultrasonic wave hits it, the sensor pro-
duces just Idamage. However, the huge background current causes our output to constantly be Vout =VSS,
so we are not able to tell whether an ultrasonic wave is present or not.

We would like to fix this in our circuit by canceling the background current and retaining only the
useful signal. For this purpose we are going to use a current source, Ifix, shown in Fig. 3(a), whose
value we can choose. How would you connect this current source in your circuit and what value
would you pick for it? Redraw the entire circuit with the new current source, Ifix, added and give the
value of Ifix in terms of Idamage, iultra,R,VREF. Explain how your design works.
Solutions:
We want to have only iultra flow through R. To achieve this we will insert the correcting current source
in parallel with the input source iultra + Idamage and set it at Ifix = Idamage in opposite polarity, so that
KCL gives:

Idamage + iultra = Idamage + IR −→ IR = iultra �
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Ifix

(a) Constant current source Ifix.
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(b) Damaged transresistance amplifier circuit.

Figure 3: Circuits detailing the transresistance amplifier design, including the background signal Idamage.
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3. Saving Lives with Op-Amps (19 points)

An electrocardiogram, or ECG, is a medical device used to detect electrical signals in your heart. Typically,
the voltage signal from the human heart is only 1×10−3 V at maximum. However, in order for healthcare
professionals to properly interpret ECGs, these signals need to be amplified so that abnormalities are more
obvious. In this problem we will do so by using ideal op-amps.
Note: Assume that VDD =−VSS in all subparts.

(a) (3 points) We need to amplify the voltage signal recorded by the electrodes Vin by a factor of 1000.
Using the op-amp in Figure 4 below and 2 resistors, draw a circuit that achieves Vout = 1000 ·Vin.
Write an equation for Vout in terms of Vin and the resistor(s), label the resistors you use (i.e.
R1,R2), and choose their values. You should redraw the entire circuit in your answer sheet, but there
is no need to draw the human as long as you label Vin. Clearly explain and show your work.

Figure 4: Unfinished ECG amplification circuit.

Solutions:
To achieve this input-output relationship we need to use a non-inverting amplifier like the one shown
in Fig. 5, which was analyzed in lecture and gives: Vout =Vin(1+

Rtop
Rbottom

) .

To get Vout = 1000Vin, we need to size Rtop and Rbottom such that Rtop = 999Rbottom.
One such option is selecting Rtop = 999 ·103Ω and Rbottom = 1 ·103Ω.
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Figure 5: Complete ECG amplification circuit.

(b) (4 points) A friend of yours is also working on an ECG amplification circuit, and shows you their
design in Figure 6. Their design uses Relectrode = 1 · 103Ω, R1 = 1 · 103Ω, and R2 = 1 · 106Ω. They
claim their circuit gives, Vout =−1000 ·Vin. Is their claim true?

• If yes, justify why.
• If no, how would you choose the value of R2 to achieve Vout =−1000 ·Vin, assuming that both

Relectrode and R1 are fixed at Relectrode = R1 = 1× 103Ω? Clearly show your work, and justify
your answers.

Figure 6: An alternative ECG op-amp circuit.

Solutions: This is the inverting amplifier topology analyzed in lecture. Using equivalence to lump
R1 and Relectrode together we get that:

Vout =−
R2

R1 +Relectrode
Vin =−Vin =−500Vin 6=−1000Vin .

So their claim is not true.
Since we have

Vout =−
R2

R1 +Relectrode
Vin

and R1, Relectrode are fixed at Relectrode = R1 = 1×103Ω, we need to set R2 = 2MΩ = 2×106Ω in order
to get Vout =−1000Vin.
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(c) (4 points) Another configuration often used by healthcare professionals is to attach one electrode to the
heart (recording its electrical signal, Vin) and another electrode to the right leg to serve as a reference
voltage, as shown in Figure 7. What is the output voltage, Vout, as a function of Vin, VRL, Rbottom,
and Rtop? Clearly show your work.

Figure 7: Alternative op-amp ECG topology.

Solutions:
Method 1: Superposition
We can find the output of this circuit by treating VRL as a second input and apply superposition: Zero-
ing out Vin first and looking at VRL we get the folllowing equivalent ckt:

Figure 8: Alternative op-amp ECG topology with Vin zeroed-out

We can see that this is an inverting amplifier, so the output of the circuit is:

Vout,VRL =−
Rtop

Rbottom
VRL .
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Next we zero-out and look at the output due to Vin only:

Figure 9: Alternative op-amp ECG topology with VRL zeroed-out

Which is a non-inverting amplifier whose output is:

Vout,Vin = (1+
Rtop

Rbottom
)Vin .

Applying superposition, we get:

Vout =Vout,Vin +Vout,VRL =Vin(1+
Rtop

Rbottom
)−VRL(

Rtop

Rbottom
) .

Method 2: NVA
Alternatively, we can use NVA & golden rules to find the output of this circuit: Since this ckt is in
negative feedback, golden rule #2 gives u− =Vin, while KCL at u− gives:

IRbottom = IRtop

⇒ VRL−u−
Rbottom

=
u−−Vout

Rtop

⇒ VRL−Vin

Rbottom
=

Vin−Vout

Rtop
.

Solving for Vout, we get:

Vout =Vin(1+
Rtop

Rbottom
)−VRL(

Rtop

Rbottom
) .

EECS 16A, Fall 2020, Final Exam – SOLUTIONS 9



10

(d) (8 points) Even after amplification, certain peaks of your ECG signal are too low to be discerned.
You want to sample them and amplify them a bit more. To this end, you use the circuit in Figure 10.
The circuit cycles through two phases: in phase 1, switches labeled φ1 are ON and φ2 are OFF, while
in phase 2, switches labeled φ2 are ON and φ1 are OFF. Calculate the output voltage, Vout, during
phase 2, after steady state has been reached, in terms of C1, C2 and Vin. Clearly show your work.

−
+Vin

φ1

C1

φ1

C2

φ1

+

−

Vout

φ2

Figure 10: Switch capacitor voltage boosting circuit.

Solutions:
The equivalent circuit during phase 1 is:

−
+Vin

u1

C1

+

−

VC1 C2

+

−

VC2

.

The equivalent circuit during phase 2 is:

C1

+

−

VC1 C2

+

−

VC2

umid uout

+

−

Vout

.

We can see that during phase 2 there are two floating nodes: umid and uout .
Node umid is connected to the “+” plate of C1 and the “−” plate of C2. We will first calculate the
charge on those plates in phase 1:

Qφ1
umid

=C1Vin−C2Vin .
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And then the charge on that node during phase 2:

Qφ2
umid

=C1umid−C2(uout −umid) .

Equating the two we get:

C1Vin−C2Vin =C1umid−C2(uout −umid) . (1)

Next, we will look at node uout , which is connected to the “+” plate of C2 during phase 2. For the
charge stored on that uout during phase 1 we have:

Qφ1
uout

=C2Vin .

The charge on that node during phase 2:

Qφ2
uout

=C2(uout −umid) .

Equating the two we get:

C2Vin =C2(uout −umid)⇒Vin = uout −umid . (2)

Plugging (2) into (1) we get:

C1Vin−C2Vin =C1umid−C2Vin

⇒Vin = umid . (3)

Finally, plugging (3) into (2) we get:

Vout = uout −0 = 2Vin .

.
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4. Hyperspectral Classification of Tomatoes (14 points)

You’re a high-tech farmer who just bought a new hyperspectral sensor to monitor your crops.
NOTE: You do not need to understand how a hyperspectral sensor works to solve this problem.

You attach the sensor to a drone and fly it over your crops, taking measurements of the hyperspectral sig-
nature for different points along the field. You want to use these measurements to identify which crops are
healthy and which crops are getting sick. Your sensor gives you a spectral signature for each plant as a
length 5 vector, where each entry of the vector represents a different frequency. Scientists have determined
that healthy versus sick tomato plants will have the following spectral signatures as shown in Figure 11.

1 2 3 4 5

0

1

2

3

4

Healthy Tomato Plant (~sh)

1 2 3 4 5

0

1

2

3

4

Sick Tomato Plant (~ss)

Figure 11: Spectral signature for healthy tomato plant (~sh) and sick tomato plant (~ss).

They can also be represented in vector form:

~sh =


3
1
0
2
4

 , ~ss =


1
0
2
4
3

 .
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(a) (6 points) Using your spectral sensor, you measure the following spectral signature for one of your
tomato plants as shown in Figure 12. This measurement has some noise in it.

1 2 3 4 5

0

1

2

Measured (~sm)

Figure 12: Spectral signature for the measurement,~sm.

The spectral signatures for healthy, sick, and your measured tomato plants can also be represented in
vector form as

~sh =


3
1
0
2
4

 , ~ss =


1
0
2
4
3

 , ~sm =


1
0
0
1
2

 .
Since spectral signatures never exactly match, the standard procedure is to calculate the angle between
signature vectors to determine how close they are. Compute the angle between ~sm and ~sh and the
angle between~sm and~ss. Is your measured vector closer to the sick plants or the healthy plants?
Classify your plant’s health based on the angle between your measured spectral signature (~sm) and the
known spectral signatures, (~sh,~ss). Show your work and justify your answer.
NOTE: Table 2 can be helpful for finding the angles.

Table 2: Cosine Table

cos(θ) θ(◦)
9√
180

47.87
10√
180

41.81
11√
180

34.93
12√
180

26.57
13√
180

14.31
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Solutions:
The solution to this problem is to use the inner product formula to compute the angles:

cos(θ) =
<~s1,~s2 >

‖~s1‖‖~s2‖
.

Comparing the measurement with the spectral signature for the healthy plant, we get:

cos(θ1) =
<~sm,~sh >

‖~sm‖‖~sh‖

=

<


1
0
0
1
2

 ,


3
1
0
2
4

>

‖


1
0
0
1
2

‖‖


3
1
0
2
4

‖
=

13√
6∗
√

30

=
13√
180

.

Comparing the measurement with the spectral signature for the sick plant, we get:

cos(θ2) =
<~sm,~ss >

‖~sm‖‖~ss‖

=

<


1
0
0
1
2

 ,


1
0
2
4
3

>

‖


1
0
0
1
2

‖‖


1
0
2
4
3

‖
=

11√
6∗
√

30

=
11√
180

.

From the cosine table, we get that θ1 = 14.31◦ and θ2 = 34.93◦. The measured tomato plant has a
smaller angle with the healthy plants. Therefore, the plant is healthy.
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(b) (4 points) It’s a windy day and the drone got pushed as it was taking a measurement, so now the
measurement has a linear combination of measurements for several different tomato plants (some of
which are healthy and some of which are sick). So your measurement is

~sm = α~sh +β~ss +~e, (4)

where~e represents an error vector that is unknown.
The values you get for your measurement are:

~sm =


5
1
4
10
10

 .

The measurement is also shown in Figure 13.

1 2 3 4 5

0
1

4
5

10

Measured (~sm)

Figure 13: Spectral signature for your measurement,~sm.

Recall that

~sh =


3
1
0
2
4

 , ~ss =


1
0
2
4
3

 .

You want to identify the unknowns α and β . Write a least squares problem in the format A~x =~b to
identify the unknowns α and β . Show your work. You do not have to solve for α and β .
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Solutions:

~sm = A~x

=

~sh ~ss

[α

β

]


5
1
4
10
10

=


3 1
1 0
0 2
2 4
4 3


[

α

β

]

(c) (4 points) Your drone got pushed by the wind again, but this time it was while it was taking a measure-
ment on the border of three adjacent fields - your tomato, pepper, and avocado fields.

Tomato, pepper, and avocado plants have unique spectral signatures with a length of 5. The notations
are described as the following:

• ~sh and~ss represent the spectral signatures of healthy and sick tomato plants
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• ~sph and~sps represent the spectral signatures of healthy and sick pepper plants
• ~sah and~sas represent the spectral signatures of healthy and sick avocado plants

Your measurement is now a linear combination of 6 possible spectral signatures:

~sm = α1~sh +β1~ss +α2~sph +β2~sps +α3~sah +β3~sas. (5)

Here α1,α2,α3 are the unknown weights of healthy tomato, pepper, and avocado plants respectively.
β1,β2,β3 are the unknown weights of sick tomato, pepper, and avocado plants respectively. Is it
possible to uniquely determine the weights of healthy/sick tomatoes, peppers, and avocados from
your measurement in equation 5? Why or why not? Show your work and justify your answer.
Solutions:
We write out equation (5) into a matrix-vector form:

~sm = A~x

⇒~sm =

~sh ~sph ~sah ~ss ~sps ~sas




α1
α2
α3
β1
β2
β3

 .

We will not be able to uniquely determine the unknown weights. This problem is underdetermined and
has many possible solutions, since the matrix is of size 5×6 and we therefore have more unknowns
than we have equations.
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5. Cross-correlation (28 points)

We are building our own Acoustic Positioning System.
NOTE: The signatures~s1,~s2 in each sub-part are different; each prompt is independent from the others.

(a) (6 points) We have two signatures/gold codes of length-5, given by ~s1 and ~s2 as in Figure 14. So far
we have numerically computed their linear cross-correlation Corr~s1 (~s2), yet a few entries have been
tragically lost! Fortunately we can compute these omitted terms by hand. Please compute the missing
cross-correlation values at shifts k =−1 and k =+2. Show your work and justify your answer.

~s1 =


+1

0
−1

0
+1

 ~s2 =


+1
+1

0
−1
+1

 .

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

Figure 14: Linear cross-correlation plot of the two signals Corr~s1 (~s2). The x-axis represents the shift.

Solutions:
To find the cross-correlation value at shift k=-1, we may directly compute it from Corr~s1 (~s2)[−1] =
∑
n
~s1[n] ~s2[n+1] over all nonzero terms, so for n = 1,2,3,4:

4

∑
n=1

~s1[n] ~s2[n+1] = 1 ·1 + 0 ·0 + −1 ·−1 + 0 ·1

= 2 .

Next we compute Corr~s1 (~s2)[+2] = ∑
n
~s1[n] ~s2[n−2] but now over just n = 3,4,5:

3

∑
n=1

~s1[n] ~s2[n−2] = −1 ·1 + 0 ·1 + 1 ·0

= −1 . �
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(b) (4 points) We are trying out some new codes ~s1 and ~s2. We only know that the codes are normalized
(〈~s1,~s1〉= 1, 〈~s2,~s2〉= 1) and their inner-product is 〈~s1,~s2〉= 0.3. During our test we have received the
signal~r = 1

2~s1 +
1
3~s2. Without knowing any more information about our codes, compute Corr~r (~s1) at

the shift k = 0. Show your work and justify your answer.
Solutions:
This is possible only because at k = 0, the correlation reduces to an inner-product: Corr~r (~s1)[k = 0] =
〈~r,~s1〉. Since the inner-product is a linear operation, we can expand out~r and find the result.

Corr~r (~s1)[k = 0] = 〈~r,~s1〉

= 〈 1
2~s1 +

1
3~s2 , ~s1 〉

= 1
2 〈~s1,~s1〉 + 1

3 〈~s1,~s2〉

= 1
2 1.0 + 1

3 0.3

= 0.6 �
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(c) (4 points) We again have two new signals~s1 and~s2, and are now given the plot of Corr~s1 (~s2) as shown
in Figure 15. Our receiver identified a signal~r which we know to be related to the code ~s2 by some
scaling, shifting, and/or reflection. However, we only know the linear cross-correlation Corr~s1 (~r) as
shown in Figure 16. Can you express~r in terms of~s2? Show your work and justify your answer.

−4 −2 2 4

2

4

Figure 15: Linear cross-correlation plots for Corr~s1 (~s2).

−4 −2 2 4

2

4

Figure 16: Linear cross-correlation plots for Corr~s1 (~r).

Solutions:
By inspection of Figure 16, the correlation plot of ~s1 with~r is the same as the correlation plot of ~s1
with ~s2, only altered by a vertical scaling of 1/2. This is most evident at the k = −1 shift, where
Corr~s1 (~r)[−1] = 2 and Corr~s1 (~s2)[−1] = 4.

So far we’ve concluded that Corr~s1 (~r) =
1
2 Corr~s1 (~s2).

Next we must recognize that correlation is a linear operation, so we can see

Corr~s1

(
1
2
~s2

)
[k] = ∑

n
~s1[n]

1
2
~s2[n− k] =

1
2

Corr~s1 (~s2)[k].

Thus the relationship of~r with respect to~s2 is

~r[n] =
1
2
~s2[n]. �

EECS 16A, Fall 2020, Final Exam – SOLUTIONS 20



21

(d) (4 points) With a little effort we managed to create two good gold codes of length 100,~s1 and~s2. The
linear cross-correlation of~s1 and~s2 is small at all shifts while the autocorrelation of each signal is also
small, except at shift k = 0. We receive our first signal~r which we know to be a combination of both
codes

~r[n] = ~s1[n− k1] + ~s2[n− k2]. (6)

The linear cross-correlation Corr~r (~s1) has been computed and plotted in Figure 17, and similarly
Corr~r (~s2) is plotted in Figure 18. Determine the shifts for ~s1 and ~s2 in the received signal ~r, i.e.
solve for k1 and k2 in equation (6). Explain your answer.
Note: Don’t worry too much about identifying the exact value for k1 and k2. As long as your answer is
reasonable, you will receive full credit.

Figure 17: Linear cross-correlation plots for Corr~r (~s1).

Figure 18: Linear cross-correlation plots for Corr~r (~s2).

Solutions: Let us start substituting~r[n] = ~s1[n− k1] + ~s2[n− k2] into our correlation definitions.

Corr~r (~s1)[k] = ∑
n
~r[n]~s1[n− k] = ∑

n
~s1[n− k1]~s1[n− k] +

����������
∑
n
~s2[n− k2]~s1[n− k]

Corr~r (~s2)[k] = ∑
n
~r[n]~s2[n− k] =

����������
∑
n
~s1[n− k1]~s2[n− k] + ∑

n
~s2[n− k2]~s2[n− k]

We approximate the cancellation of terms since codes~s1 and~s2 have a small cross-correlation.

From Figure 17 we note for Corr~r (~s1) the only significant peak occurs at shift k = −20. Since the
auto-correlation Corr~s1 (~s1) is peaked at the zero-shift, it must be (based on the top equation) that
k1 = k =−20. With similar reasoning (in regards to Figure 18) we identify k2 =+10.
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Thus we arrive at our solution for the received signal:

~r[n] =~s1[n+20]+~s2[n−10].
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(e) (4 points) It appears that making codes orthogonal to each other improves the robustness of our Acous-
tic Positioning System. Knowing this, we want to use our knowledge of projections to write our first
code as~s1 =~a+~b, where 〈~b,~s2〉= 0 and~a = α ~s2 (for some constant α) as illustrated in Figure 19.
Compute α and~b in terms of~s1 and~s2. Show your work and justify your answer.

~s1

~s2~a = α ~s2

~b

Figure 19: 2D figure of~s1 =~a+~b.

Solutions:
From the setup we may observe~a is the projection of~s1 onto~s2.

~a = proj~s2
(~s1) =

(
〈~s1,~s2〉
〈~s2,~s2〉

)
~s2 −→ α =

〈~s1,~s2〉
〈~s2,~s2〉

Acquiring the new orthogonal code~b follows from our result above

~b = ~s1−~a = ~s1−
(
〈~s1,~s2〉
〈~s2,~s2〉

)
~s2. �

– Alternate Method –
The constant α can also be determined algebraically using the fact that~b is orthogonal to~s2

〈~s1,~s2〉 = α〈~s2,~s2〉 + ���〈~b,~s2〉.

Thus we can write α in terms of~s1 and~s2: α = 〈~s1,~s2〉
〈~s2,~s2〉 .

Finding~b from this point follows identically as shown above

~b = ~s1−~a = ~s1−α ~s2 = ~s1−
(
〈~s1,~s2〉
〈~s2,~s2〉

)
~s2. �

(f) (6 points) After optimizing two orthogonal codes~s1 and~s2 (i.e. 〈~s1,~s2〉= 0), we would next like to in-
clude another code ~s3 and make it orthogonal to ~s1 and ~s2. We can start by writing ~s3 as
~s3 =~a+~b, such that ~a belongs to the span{~s1,~s2} and~b is orthogonal to span{~s1,~s2}, i.e. 〈~b,~s1〉 = 0
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and 〈~b,~s2〉= 0. Use the idea of projections to write both ~a and~b in terms of ~s1, ~s2, and ~s3, and
inner-products thereof. (For full credit your final answer may not contain matrices nor matrix-
vector products). Show your work and justify your answer.

Solutions:

In least-squares method, the minimizing solution ~̂x to the system A~x = ~y will result in A~̂x produc-
ing the projection of vector ~y onto the column space of A, in which the error vector ~e =~y−A~̂x is
orthogonal to the span of the column vectors in A. In this problem’s context, we need to acquire

~b ≡~s3−A~̂x, in which the original signal ~s3 must be projected onto A ≡

↑ ↑
~s1 ~s2
↓ ↓

. So we may ap-

ply our least-squares formula to acquire~b = A~̂x = A(AT A)−1AT~s3. But since A has orthogonal
columns, we can substantially simplify this expression:

A~̂x =

↑ ↑
~s1 ~s2
↓ ↓

 [← ~s T
1 →

← ~s T
2 →

]↑ ↑
~s1 ~s2
↓ ↓

−1[
← ~s T

1 →
← ~s T

2 →

]
~s3

=

↑ ↑
~s1 ~s2
↓ ↓

 [||~s1||2 0
0 ||~s2||2

]−1[← ~s T
1 →

← ~s T
2 →

]
~s3

=

↑ ↑
~s1 ~s2
↓ ↓

 [||~s1||2 0
0 ||~s2||2

]−1
[
〈~s1,~s3〉
〈~s2,~s3〉

]

=

↑ ↑
~s1 ~s2
↓ ↓

 〈~s1,~s3〉
〈~s1,~s1〉
〈~s2,~s3〉
〈~s2,~s2〉


=

(
〈~s1,~s3〉
〈~s1,~s1〉

)
~s1 +

(
〈~s2,~s3〉
〈~s2,~s2〉

)
~s2 .

Finally, we can subtract this projection from the original signal~s3 to obtain an orthogonal code to both
~s1 and~s2:

~b = ~s3 −
(
〈~s3,~s1〉
〈~s1,~s1〉

)
~s1 −

(
〈~s3,~s2〉
〈~s2,~s2〉

)
~s2. �

– Alternate Method –
Since codes~s1 and~s2 are orthogonal (so the columns of A are orthogonal), we can simplify the projec-
tion onto A by performing these operations independently using the formula projA(~s3) = proj~s1

(~s3) +
proj~s2

(~s3). This was derived in discussion and must be referenced explicitly to receive credit. The so-
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lution becomes:

~b = ~s3 − proj~s1
(~s3) − proj~s2

(~s3)

= ~s3 −
(
〈~s3,~s1〉
〈~s1,~s1〉

)
~s1 −

(
〈~s3,~s2〉
〈~s2,~s2〉

)
~s2. �

To verify this works, we directly compute the inner-product of~b with the two original signals:

〈~b,~s1〉 = 〈~s3,~s1〉 −
(
〈~s3,~s1〉
〈~s1,~s1〉

)
〈~s1,~s1〉 −

(
〈~s3,~s2〉
〈~s2,~s2〉

)
����〈~s2,~s1〉

= 〈~s3,~s1〉 − 〈~s3,~s1〉 = 0

〈~b,~s2〉 = 〈~s3,~s2〉 −
(
〈~s3,~s1〉
〈~s1,~s1〉

)
����〈~s1,~s2〉 −

(
〈~s3,~s2〉
〈~s2,~s2〉

)
〈~s2,~s2〉

= 〈~s3,~s2〉 − 〈~s3,~s2〉 = 0.

Thus~b is orthogonal to both original codes.
(Notice this only worked because~s1 and~s2 are orthogonal!)
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6. Warm for the Holidays (14 points)

Winter is coming, and both you and your roommate are in desperate need of electric heating eye pads to
avoid overly dry eyes this holiday. Tragically the circuit for your eye pads broke, yet fortunately you’ve
taken EECS16A and have come up with a clever fix by designing a voltage divider and a comparator circuit!

(a) (4 points) First you build a circuit that converts temperature change to voltage change. Your design is
shown in Fig. 20. In your design you use two temperature dependent resistors, whose values are given
by R0+αT , R0−αT , where R0 is the resistor value at 0 degrees centigrade, α is a thermal coefficient,
and T is the temperature of your eye pads.
What is the temperature dependent output voltage, VT, of this circuit, as a function of Vs, R0, α ,
and T ? Is VT a linear function of T? Clearly show all your work.

−
+Vs

R0 +αT

R0−αT

VT

Figure 20: Temperature Sensing Circuit

Solutions: This circuit is essentially a voltage divider:

VT =
R0 +αT

R0 +αT +R0−αT
Vs =

R0 +αT
2R0

Vs .

This is an affine function of T since there is an offset term in our final expression.

(b) (4 points) We want to use a comparator to turn the heat ON and OFF, and you set up the circuit in Fig.
21. You process the VT to make Vin = (1− T

T0
)[Volts], where T0 = 30◦C. The heat will turn on when

Vout =VDD. For what range of temperatures, T , is Vout =VDD? Give your answer in terms of ◦C.
Clearly show all your work.
Solutions:
The output is equal to VDD, when the voltage at the “+” terminal is larger than the “−” terminal of the
comparator. The condition for that is:

Vin > 0→ 1− T
T0

> 0→ T < T0 ,
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−

+Vin

Vout

VDD = 6V

VSS =−6V

Figure 21: First attempt eye-pad control circuit.

which means that Vout =VDD (i.e. the heater turns ON) for all temperatures that are below 30◦C.

(c) (6 points) Your TA, Moses, points out that just using the circuit in Figure 21 will cause your heat to
turn ON and OFF due to very small fluctuations. Instead, he suggests analyzing the following circuit
in Figure 22. Find the voltage u+ at the positive terminal of the comparator, as a function of Vout,
R1, R2, and Vref. Clearly show all your work.

−

+

Vin

R1

− +

Vref

u+

R2

Vout

VDD

VSS

Figure 22: Proposed eye-pad control circuit.

Solutions:
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−

+

Vin

− +

Vref
R1

IR1

u+

R2

IR2

Vout

VDD

VSS

A common misconception here was to assume that the circuit is in negative feedback. It is not, the
output connects back to the ’+’ terminal of the op-amp. We can compute the node voltage using NVA
and the fact that no current will flow into the op-amp.
Applying KCL at the “+” terminal of the comparator, and because there is no current entering the +
terminal of the comparator we get:

IR1 = IR2 .

Substituting the currents using Ohm’s law we get:

Vref−u+
R1

=
u+−Vout

R2
→ u+ =

R2

R1 +R2
Vref +

R1

R1 +R2
Vout .
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7. Least Squares for Robotics (16 points)

Robots rely on sensors for understanding their environment and navigating in the real world. These sensors
must be calibrated to ensure accurate measurements, which we explore in this problem.

(a) (3 points) Your robot is equipped with two forward-facing sensors – a radar and camera.
However, the sensors are placed with an offset (i.e. a gap) of ` in meters (m), as depicted in Fig. 23,
and you want to find its value. The radar returns a range ρ in meters (m) and heading angle θ in radians
(rad) with respect to the object. In contrast, the camera only returns an angle, φ in radians (rad), with
respect to the object.

xr

yrθ
φ

camera
`

radar

ρ

object
`

Figure 23: Sensor Placement and Offset `.

These relationships are summarized by the following sensor model, where xr and yr are the Cartesian
coordinates of the object with respect to the radar:

xr = ρcos(θ) , (7)

yr = ρsin(θ) , (8)

tan(φ) =
yr

xr + `
. (9)

Assuming φ 6= 0, use equations (7), (8), (9) to express ` in terms of ρ , θ , and φ .
Solutions:
From the sensor model, we have:

(xr + `) tan(φ) = yr

⇒`=
yr

tan(φ)
− xr

⇒`= ρ

(
sin(θ)
tan(φ)

− cos(θ)
)
.

Note: We stipulate that φ 6= 0 since otherwise division by tan(φ) would not be well-defined. When
φ = 0, the object would be located right in front of both the radar and camera, and any positive value
of ` would solve the system of equations. This explanation is not required for full credit.
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(b) (5 points) Often it is difficult to precisely identify the value of `. To learn the value of ` you decide to
take a series of measurements. In particular, you take N measurements and get the equations:

a `+ ei = bi

for 1≤ i≤ N. Here a 6= 0 is a fixed and known constant. Each bi represents your ith measurement and
ei represents the error in your measurement. While you know all of the bi values, you do not know the
error values ei.
We can write this equation in a vector format as:

A`+~e =~b ,

where A =

a
...
a

 , ~e =
e1

...
eN

 , ~b =

b1
...

bN

.

In this simple 1-D case, the least squares solution is a scaled version of the average of {bi}N
i=1.

Find the best estimate for `, denoted as ˆ̀, using least squares. Simplify your expression and
express ˆ̀ in terms of a, bi, and N. Your answer may not include any vector notation.
Note: A is a vector and not a matrix.
Solutions:

ˆ̀ is given by the least square solution:

ˆ̀= (AT A)−1AT~b

= (Na2)−1a
N

∑
i=1

bi

=

N
∑

i=1
bi

aN
.

(c) (8 points) Now we turn to the task of controlling the robot’s velocity and acceleration, which is a key
requirement for navigation.
We use the following model for the robot, which describes how the velocity and acceleration of the
robot changes with timestep k:
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[
v[k+1]
a[k+1]

]
=

[
1 1
0 1

][
v[k]
a[k]

]
+

[
0
1

]
j[k] ,

where

• k is the timestep;
• v[k] is the velocity state at timestep k;
• a[k] is the acceleration state at timestep k;
• j[k] is the jerk (derivative of acceleration) control input at timestep k.

We start at a known initial state
[

v[0]
a[0]

]
, and we want to find j[0] to set

[
v[1]
a[1]

]
as close to

[
0
0

]
as

possible. For this, we minimize:

E =

∥∥∥∥[v[1]
a[1]

]∥∥∥∥2

.

Find the best estimate for the optimal choice of jerk, ĵ[0], by using least squares method to
minimize E. Express your solution in terms of v[0] and a[0]. Show your work.
Hint: Rewrite E in terms of j[0] and other relevant terms.
Solutions:

Starting from the hint, we try to rewrite the cost E. Applying the dynamics model, we find that:

E =

∥∥∥∥[v[0]+a[0]
a[0]+ j[0]

]∥∥∥∥2

=

∥∥∥∥[0
1

]
j[0]−

[
−v[0]−a[0]
−a[0]

]∥∥∥∥2

=
∥∥∥A j[0]−~b

∥∥∥2
.

Therefore, ˆj[0] is given by the least square solution:

ˆj[0] = (AT A)−1AT~b

= (1)−1× (−a[0])

=−a[0].
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8. Proof (10 points)

Let A,B ∈ Rn×n. The eigenvalues and eigenvectors of A are given by (α1,~v1), (α2,~v2), · · · , (αn,~vn), where
all the αi, 1 ≤ i ≤ n, are distinct. Similarly the eigenvalues and eigenvectors of B are given by (β1,~v1),
(β2,~v2), · · · , (βn,~vn), where all the βi, 1≤ i≤ n, are distinct.
NOTE: A,B have identical eigenvectors.

Prove that:
A B~x = B A~x,

for any vector~x ∈ Rn.

Solutions:
To prove that the matrices A and B commute for any ~x ∈ Rn, we must first be able to write any such ~x in
terms of the shared matrix eigenvectors~x = ∑

n
j=1 c j ~v j. We know that this is true from the theorems proved

in lecture and the notes, since {~v1,~v2, . . . ,~vn} forms a basis for Rn. You must acknowledge this to receive
full credit.

Since eigenvectors ~v j form a basis of Rn, we can write any vector as a linear combination of the
eigenvectors, i.e. ~x = ∑

n
j=1 c j~v j.

We know that any~x ∈ Rn can be uniquely expressed in the identical basis of eigenvectors for A and B.

A B~x =
n

∑
j=1

c j A B~v j

=
n

∑
j=1

c j A β j ~v j

=
n

∑
j=1

c j β j A~v j

=
n

∑
j=1

c j β j α j ~v j.
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Similarly,

B A~x =
n

∑
j=1

c j B A~v j

=
n

∑
j=1

c j B α j ~v j

=
n

∑
j=1

c j α j B~v j

=
n

∑
j=1

c j α j β j ~v j

=
n

∑
j=1

c j β j α j ~v j .

Therefore bot the expressions are equal. The key property we are exploiting is that each~v j is simultaneously
an eigenvector of A and B.
The only other property we needed was matrix linearity A(a~x + b~y ) = a A~x + b A~y. This concludes
the proof.
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In case you want a reminder on how to show that {~v1,~v2, . . . ,~vn} forms a basis for Rn:
It was shown in lecture that the eigenvectors of a matrix with entirely distinct eigenvalues are all mutually
linearly independent and thus form a basis for Rn.

i. Fundamental Idea: Since each ~v j lives in Rn and there are n such vectors, the set of eigenvectors will
form a basis of Rn if and only if they are linearly independent.

ii. Prepare contradiction: Suppose the converse; the eigenvectors are linearly dependent so there is a set
of constants d j we can choose such that ∑

n
j=1 d j~v j =~0. Now we know multiplying~0 by any matrix

will still result in zero, and furthermore any inner product
〈
~a , ~0

〉
will also be zero (regardless of~a).

iii. Arriving at the paradox: Without loss of generality, say αn is the eigenvalue of A with the greatest
absolute value |αn|> |α j| for any j ∈ 1,2, . . . ,n−1.
NOTE: this is a strong inequality since the eigenvalues of A are all distinct!
Next compute the inner product of the expression

〈
~vn ,

1
αN

n
AN~0

〉
(which must always be zero) for any

positive integer N.

0 ≡
〈
~vn ,

1
αN

n
AN~0

〉
=

n

∑
j=1

d j

αN
n

〈
~vn , AN~v j

〉
=

n

∑
j=1

d j

(
α j

αn

)N 〈
~vn , ~v j

〉
.

In the large N limit, the term in parentheses will vanish for all terms except for j = n. The only
remaining term is (αn/αn)

N = 1. Thus we arrive at the final contradiction

0 ≡ dn |~vn|2 > 0. �

This means there is no choice of d j such that ∑
n
j=1 d j~v j =~0.

Q.E.D.

Small note:

In the event that our linear combination happened to have dn = 0, then we can return to step ’ii.’ with n− 1 in place of n (since dn = 0).

While it could be that dn−1 = 0 as well, the procedure here can be continuously applied until you reach a nonzero d j . Further, there must be

a nonzero d j as required by the very definition of linear dependence!!
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