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EECS 16A Designing Information Devices and Systems I
Spring 2020 Midterm 1

Midterm 1 Solution

PRINT your student ID:

PRINT AND SIGN your name: ,
(last name) (first name) (signature)

PRINT your discussion section and GSI(s) (the one you attend):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. What are you looking forward to over Spring Break? (3 points)

2. Approximately what % of lectures do you watch regularly, either online or in person? (0 points)
For statistical purposes only.

© 0% © 25% © 50% © 75% © 100%

3. Tell us about something that makes you happy. (3 points)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

4. Splotchy Writing (10 points)

Professor Courtade writes with a sharpie to accommodate the vision of as many people as possible. Unfortu-
nately, some characters get smudged, which makes them difficult to read. The following is a (hypothetical)

passage from lecture notes, and the smudges are labeled 1 , 2 , . . . , 10 . Your task is to identify correct
expressions for each of the smudges.

Let A ∈ Rn× 1 be a matrix with rank r. It is always possible to write A in terms of its compact SVD

A =UΣV>,

where Σ is a diagonal r× r matrix, and U ∈ R 2 × 3 and V ∈ R 4 × 5 have orthonormal columns. This
means that U>U = I

6
and V>V = I

7
, where we write Im to denote the m× 8 identity matrix, for an

integer m. The columns of U form a basis for the range of A, which is is defined as

range(A) = {A~x |~x ∈ Rk}.

Note that range(A) is a subspace of R 9 , which has dimension 10 .

Select the values for each smudge from the multiple choice below. For each smudge, completely fill in the
circle next to the correct answer. (Hint: Resist the temptation to get distracted by unfamiliar terminology...
that isn’t what this question is about.)

Concepts: This question tests your understanding of matrix multiplication (specifically, compatibility
of dimensions necessary for, and resulting from, matrix-matrix multiplication), as well as dimension of
column-space (i.e., range). As suggested by the hint, the technical jargon (such as compact SVD, orthonor-
mal) is completely irrelevant to determining the smudged dimensions.

Solution:

1 ⊗ k © m © n © r

2 © k © m ⊗ n © r

3 © k © m © n ⊗ r

4 ⊗ k © m © n © r

5 © k © m © n ⊗ r

6 © k © m © n ⊗ r

7 © k © m © n ⊗ r

8 © k ⊗ m © n © r

9 © k © m ⊗ n © r

10 © k © m © n ⊗ r
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PRINT your name and student ID:

5. Matrix Inversion (10 points)

You landed your first job at 16Atech (the Bay Area’s newest and hottest tech company), and your first
assignment is to invert a matrix A ∈ Rn×n. You say “no problem”, and implement Gaussian elimination.
You obtain the following reduction of the augmented matrix:

[A|I]−→ [I|P].

The dimension n is extremely large, so the computation takes several days to complete, and you give your
boss the matrix P ∈ Rn×n just minutes before the deadline.

(a) (2 points) Your boss panics, saying “Oh, no! Your procedure only guarantees that AP = I and not
necessarily that PA = I.” In one sentence, concisely explain why your boss thinks this might be an
issue.
Concepts: This part tests your understanding of what the reduction [A|I]−→ [I|P] means in terms of
linear equations.
Solution: The reduction [A|I]→ [I|P] corresponds to solving the system of equations AX = I in
variables X ∈ Rn×n, rather than the system of equations XA = I.

(b) (8 points) You try to calm them down, saying “Don’t worry, the matrix also satisfies PA = I, and
therefore P is the inverse of A just like you wanted. I’ll prove it to you...”
Your proof consists of the following two steps (fill in the details as your answer to this question):
Step 1: Argue that your matrix P is the unique Q ∈ Rn×n satisfying AQ = I.
Step 2: Prove that PA = AP = I. (Hint: consider the matrix A(P+PA− I))
As suggested by part (a), you should not assume that A−1 exists. Proving that it does is the point of
this problem.
Concepts: Step 1 asks you to interpret what the augmented matrix [I|P] reveals about number of
solutions to the corresponding system of linear equations. Step 2 requires you to use the distributive
property of matrix multiplication together with the previously established property of P.
Solution:
Step 1: The reduction [A|I]→ [I|P] implies there is a unique solution X = P to the system of equations
AX = I, since there are no free variables.
Step 2: Using the fact that AP = I, we follow the hint and evaluate

A(P+PA− I) = AP+APA−A = I + IA−A = I.

By the fact AP = I and the uniqueness established in Step 1, we must have P = P+PA− I, which
reduces to PA = I.
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PRINT your name and student ID:

6. Tomography (19 points)
Recall that in our simple tomography example of 4 pixels arranged into a 2×2 matrix, our initial set of mea-
surements produced the following system of equations with unknowns x1, . . . ,x4 and measured intensities
b1, . . . ,b4:

x1 +x2 = b1
x3 +x4 = b2

x1 +x3 = b3
x2 +x4 = b4

(a) (3 points) Write the above system of equations in matrix-vector form A~x =~b.
Concepts: Do you know how to write a system of equations in matrix-vector form?
Solution: 

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1




x1
x2
x3
x4

=


b1
b2
b3
b4

 .
(b) (8 points) Use Gaussian elimination to find a basis for the nullspace of your matrix in part (a). Show

your work.
Concepts: This question tests whether you know the definition of nullspace, and the mechanics of
gaussian elimination for solving the system A~x =~0.
Solution: 

1 1 0 0 0
0 0 1 1 0
1 0 1 0 0
0 1 0 1 0



swap(R2,R4) ⇒


1 1 0 0 0
0 1 0 1 0
1 0 1 0 0
0 0 1 1 0



R3← R3−R1 +R2 ⇒


1 1 0 0 0
0 1 0 1 0
0 0 1 1 0
0 0 1 1 0



R4← R4−R3 ⇒


1 1 0 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0



R1← R1−R2 ⇒


1 0 0 −1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
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(Any valid sequence of elementary row operations are acceptable, provided you arrive at the correct
matrix in rref)
So, solutions to A~x =~0 can be written as vectors~x satisfying

x1
x2
x3
x4

=


1
−1
−1
1

x4,

where x4 is a free variable. Hence a basis for N(A) is [1 −1 −1 1]>.

(c) (2 points) Suppose~x0 denotes the correct pixel values, which of course satisfy A~x0 =~b. Give another
solution~x1 to the system of equations A~x =~b, satisfying~x1 6=~x0. Leave your answer in terms of~x0.
Concepts: This question checks whether you understand how nullspace relates to characterizing the
set of solutions to a system of linear equations.
Solution: Another solution is~x0 +[1 −1 −1 1]>.

(d) (2 points) Suppose we add the measurement

x1 + x4 = b5.

Will the resulting new system of equations always have a solution for any values b1,b2, . . . ,b5? Com-
pletely fill in the circle next to the correct answer.

Concepts: This question checks whether you can determine consistency of a system of equations
(e.g., by comparing dimension of the column space and dimension of~b).
Solution:

© Yes ⊗ No

The answer is no (~b will be a vector in R5, but column-space of A has dimension at most 4, so we
cannot guarantee a solution for any choice of~b).

(e) (4 points) Assuming a solution exists for the new system of equations in part (d), will the solution be
unique? Justify your answer by showing work to support your conclusion.
Concepts: This question checks whether you understand how nullspace relates to uniqueness of a
solution to a consistent system of linear equations.
Solution: Yes, the solution will be unique. One way of seeing this is to add the measurement to our
(already reduced) system of equations and find it has trivial nullspace:

1 0 0 −1 0
0 1 0 1 0
0 0 1 1 0
1 0 0 1 0



R4← (R4−R1)/2 ⇒


1 0 0 −1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 0

 .
We can see there will be no free variables, hence the system of equations with the new measurement
has a unique solution (under the assumption of consistency).
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PRINT your name and student ID:

7. Dynamical Systems (26 points)
Define matrices Q,R ∈ R2×2 according to

Q =

[
0 3/4
1 1/4

]
, R =

[
0 1
1 0

]
.

(a) (5 points) Find the eigenvalues for the matrix Q.
Concepts: Do you know how to find the eigenvalues of a 2x2 matrix?
Solution: Note that

det(Q−λ I) = (−λ )(1/4−λ )−3/4 = (λ −1)(λ +3/4).

So, the eigenvalues are λ1 = 1,λ2 =−3/4.
(b) (4 points) Consider a system with state vector~x[n] ∈ R2 at time n≥ 1 given by

~x[n] = Q~x[n−1].

Is there a non-zero vector~x satisfying~x = Q~x ? If yes, give one such vector.
Concepts: Can you find an eigenvector corresponding to a given eigenvalue (1 in this case)?
Solution: Yes, such a vector exists since the matrix has eigenvalue 1. To solve for it, we set up the
system of equations (Q− I)~x = 0, which is explicitly written as

−x1 +3/4x2 = 0

x1−3/4x2 = 0

One solution is x1 = 3/4,x2 = 1, giving the desired vector~x = [3/4, 1]>.
(c) (3 points) Draw the state-transition diagram for the system in part (b). Label your nodes "A" and "B".

Concepts: Do you know how to draw a state-transition diagram for a system of linear equations?
Solution:

A B

1

3/4

1/4

(d) (4 points) Now, consider a system with state vector ~w[n] ∈ R2 at time n≥ 1 given by:

~w[n] =

{
Q~w[n−1] if n is odd
R~w[n−1] if n is even.

Write expressions for ~w[1], ~w[2], ~w[3] and ~w[4] in terms of ~w[0] and Q and R. Write each answer in the
form of a matrix-vector product.
Concepts: Given a description of a dynamical system, can you write out the state vectors at given
time points in terms of the initial state and the transition matrices?
Solution:

~w[1] = Q~w[0], ~w[2] = RQ~w[0], ~w[3] = Q(RQ)~w[0], ~w[4] = (RQ)2~w[0].
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(e) (10 points) Suppose we start the system of part (d) with state ~w[0] =
[
11/14 3/14

]>. Find expres-
sions for ~weven and ~wodd, which are defined according to

~weven = lim
k→∞

~w[2k], ~wodd = lim
k→∞

~w[2k+1].

In words, ~weven and ~wodd describe the long-term behavior of the system at even and odd time-instants,
respectively. (Hint: you can avoid computation by thinking about the system at even time-instants in
terms of a state-transition diagram.)
Concepts: Following the hint, you should consider the dynamical system ~w[2k] = (RQ)k~w[0] for
k ≥ 1. This is just like the dynamical systems you have considered previously, with transition matrix
(RQ). If you compute this matrix product and draw the state diagram, you will find something that
looks nearly identical to the page-rank example from lecture. So, this question tests whether you can
recognize a familiar problem, perhaps presented in a slightly unfamiliar form (but guided by a hint).
Solution: Following the hint, consider the system at even time-instants:

~w[2k] = (RQ)k~w[0], k ≥ 0.

This looks like a dynamical system with transition matrix

RQ =

[
0 1
1 0

][
0 3/4
1 1/4

]
=

[
1 1/4
0 3/4

]
.

The transition diagram for this system looks like:

A′ B′

1

1/4

3/4

This looks similar to the page rank example from lecture, where all traffic will end up on website
A′. Hence, for the given choice of ~w[0] (whose entries add to one, and therefore can be thought of as
representing fraction of traffic), we have

~weven = lim
k→∞

~w[2k] =
[

1
0

]
, and, ~wodd = Q~weven =

[
0
1

]
.
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PRINT your name and student ID:

8. Linearly Independent Solutions (5 points)

Let A ∈ R17×32 satisfy dim(C(A)) = 9, where C(A) denotes the column-space of A. How many linearly
independent solutions can be found to the system of equations A~x =~0?

Note: Be careful. You are not being asked how many solutions exist for this system of equations, but rather
how many linearly independent solutions can be found. You may just give a numerical answer; no work is
required.

Concepts: Do you know (i) definition of dimension of a subspace (equal to max number of linearly
independent vectors in a subspace); (ii) definition of null-space; and (iii) how dimension of null-space and
column-space are related to matrix dimensions (i.e., rank nullity theorem)?

Solution: The number of linearly independent solutions is equal to the dimension of N(A), which is the
maximum number of linearly independent solutions to the equation A~x = 0, by definition. Hence, we use
the rank-nullity theorem to compute:

dim(N(A)) = 32−dim(C(A)) = 23.
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PRINT your name and student ID:

9. Inverses and Transposes (8 points)

Given an invertible matrix A ∈ Rn×n, use the definition of matrix inverse to prove that

(AT )−1 = (A−1)T .

Concepts: Do you know the definition of matrix inverse (i.e., AA−1 = A−1A = I)? Do you remember what
happens when you take transpose of a matrix product?

Solution: We are given that A is invertible, meaning that there is a matrix A−1 that satisfies

AA−1 = I and A−1A = I.

We want something involving transposes, so the natural thing to do is take transpose of each of the above
identities (using the fact you’ve seen: (AB)T = BT AT ) to obtain

(A−1)T AT = I and AT (A−1)T = I.

Hence, (A−1)T is equal to the inverse of AT by definition of matrix inverse.
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PRINT your name and student ID:

10. Orthogonal Complements (16 points)

Consider the vector space Rn, and let U be a subspace of Rn. We define the set U⊥ ⊂ Rn, called the
orthogonal complement of U, according to

U⊥ = {~x ∈ Rn |~u>~x = 0 for all~u ∈ U}.

(a) (4 points) Show that U⊥ is a subspace of Rn.
Concepts: Do you know the definition of a subspace, and can you verify it on a given example?
Solution: We should show that U⊥ is closed under scalar multiplication and vector addition. To this
end, let~x1,~x2 ∈ U⊥ and α,β ∈ R. Then, for all~u ∈ U, we have

(α~x1 +β~x2)
T~u = α~xT

1~u+β~xT
2~u = 0,

where the last identity follows by definition of ~x1,~x2 ∈ U⊥. Hence, (α~x1 +β~x2) ∈ U⊥, and therefore
U⊥ is a subspace.

(b) (4 points) Find a concise expression for the intersection U∩U⊥. Justify your answer.
Concepts: You saw the operation ∩ for subspaces in your homework; can you use definitions to
compute it for a specific example?
Solution: If~x ∈U⊥, then~xT~u = 0 for any choice of~u ∈U. In particular, if~x ∈U⊥∩U, then we must
have

0 =~xT~x =
n

∑
i=1

x2
i ⇔ xi = 0 for all i ⇔ ~x =~0.

Hence, U⊥∩U= {~0}.
(c) (6 points) Working in dimension n = 3, consider the subspace

U= span


1

2
3

 ,
0

1
1

 .

Find a basis for U⊥.
Concepts: Can you formulate the problem of computing U⊥ as a system of linear equations and solve?
This is almost identical to how we compute the nullspace of a matrix: we formulate an appropriate
system of linear equations, and then solve.
Solution: To characterize U⊥, we should find the set of vectors ~x such that [1,2,3]~x = 0 and
[0,1,1]~x = 0. This can be done, for example, by reducing the augmented matrix:

[
1 2 3 0
0 1 1 0

]
−→

[
1 0 1 0
0 1 1 0

]
⇒ solutions are of form:

x1
x2
x3

=

−1
−1
1

x3.

Hence, the vector [−1,−1,1]T is a basis for U⊥.

(d) (2 points) For the subspaces U and U⊥ of part (c), show that U+U⊥ = R3.
Concepts: Do you know that three linearly independent vectors in R3 will span R3?
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Solution: We have

U+U⊥ = span


1

2
3

 ,
0

1
1

 ,
−1
−1
1

= R3,

the latter identity follows since the three vectors are linearly independent (this actually follows from
part (b)!), and therefore form a basis for R3.
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