EECS 16A Designing Information Devices and Systems I
 Spring 2020

Read the following instructions before the exam.

Format \& How to Submit Answers

There are 13 problems (4 introductory questions, and 9 exam questions, comprising 34 subparts total) of varying numbers of points. The problems are of varying difficulty, so pace yourself accordingly and avoid spending too much time on any one question until you have gotten all of the other points you can. Don't get bogged down in calculations; if you are having trouble with one problem, there may be easier points available later in the exam!

All answers will be submitted to the Gradescope "Midterm 2" Assignment (https: / /www. gradescope. com/courses/83747/assignments/427941). All questions, except introductory questions, are multiple choice and are worth 4 points each. There are 125 points possible on the exam, but your final score will be taken out of $\mathbf{1 0 0}$ points. This means that a score of $75 / 125$, normally 60%, will be bumped up to $75 / 100$, or 75%. You cannot score more than 100% on this exam.

Partial credit may be given for certain incorrect answer choices for some problems. There is no penalty for incorrect answers.

Post any content or clarifying questions privately on Piazza. There will be no exam clarifications; if we find a bug on the exam, that sub-question will be omitted from grading.

Timing \& Penalties

You have 120 minutes for the exam, with a 5 minute grace period. After the 5 minute grace period ends, exam scores will be penalized exponentially as follows: an exam that is submitted N minutes after the end of the grace period will lose 2^{N} points. The exam will become available at your personalized link at 8:10 pm PT; the grace period will expire at $\mathbf{1 0 : 1 5} \mathbf{~ p m ~ P T}$. If your submission is timestamped at $10: 16 \mathrm{pm}$ PT, you will lose 2 points; if it is timestamped at $10: 18 \mathrm{pm}$ PT, you will lose 8 points.

We will count the latest time at which you submit any question as your exam timestamp. Do NOT edit or resubmit your answers after the deadline. We recommend having all of your answers input and submitted by $10: 10 \mathrm{pm}$; it is your responsibility to submit the exam on time.

If you cannot access your exam at your link by $8: 15 \mathrm{pm}$, please email eecs16a@berkeley.edu. If you are having technical difficulties submitting your exam, you can email your answers (either typed or scanned) to eecs16a@berkeley.edu.

Academic Honesty

This is an open-note, open-book, open-internet, and closed-neighbor exam. You may use any calculator or calculation software that you wish, including Wolfram-Alpha and Mathematica. No collaboration is allowed, and do not attempt to cheat in any way. Cheating will not be tolerated.

We have zero tolerance against violation of the Berkeley Honor Code. Given supporting evidence of cheating, we reserve the right to automatically fail all students involved and report the instance to the student conduct committee. Feel free to report suspicious activity through this form. (https: //forms.gle/akhBsHVr1WG29Ufg9).

Our advice to you: if you can't solve a particular problem, move on to another, or state and solve a simpler one that captures at least some of its essence. You will perhaps find yourself on a path to the solution.

Good luck!

1. Pledge of Academic Integrity (2 points)

By my honor, I affirm that:
(1) this document, which I will produce for the evaluation of my performance, will reflect my original, bona fide work;
(2) as a member of the UC Berkeley community, I have acted and will act with honesty, integrity, and respect for others;
(3) I have not violated-nor aided or abetted anyone else to violate-nor will I-the instructions for this exam given by the course staff, including, but not limited to, those on the cover page of this document; and
(4) I have not committed, nor will I commit, any act that violates-nor aided or abetted anyone else to violate-the UC Berkeley Code of Student Conduct.

Write your name and the current date as an acknowledgement of the above. (See Gradescope)

2. Administrivia (1 point)

I know that I will lose 2^{n} points for every n minutes I submit after the exam submission grace period is over. For example, if the exam becomes available at my personalized link at 8:10 p.m. PT; the grace period will expire at $10: 15 \mathrm{p} . \mathrm{m}$. PT. If my submission is timestamped at $10: 16 \mathrm{p} . \mathrm{m}$. PT, I will lose 2 points; if it is timestamped at 10:18 p.m. PT, I will lose 8 points.

```
Yes
```


3. What is one of your hobbies? (1 point)

4. Tell us about something you're proud of this semester. (1 point)

5. Fun with Resistors (12 points)

(a) Your partner hands you an old beat-up four-band resistor, $R_{\text {mystery }}$ where the second band has been worn off with time. You can see that the first band is orange, the third band is yellow, and the fourth band is gold. Which of the following ranges does the nominal value of this unknown resistance, $R_{\text {mystery }}$, fall in? Do not consider the range allowed by the tolerance.
There is a resistor color code chart below:

COLOR	$1^{\text {ST }}$ BAND	$2^{\text {ND }}$ BAND	MULTIPLIER	TOLERANCE	
Black	0	0	1Ω		
Brown	1	1	10Ω	$\pm 1 \%$	(F)
Red	2	2	100Ω	$\pm 2 \%$	(G)
Orange	3	3	$1 \mathrm{~K} \Omega$		
Yellow	4	4	$10 \mathrm{~K} \Omega$		
Green	5	5	$100 \mathrm{~K} \Omega$	$\pm 0.5 \%$	(D)
Blue	6	6	$1 \mathrm{M} \Omega$	$\pm 0.25 \%$	(C)
Violet	7	7	$10 \mathrm{M} \Omega$	$\pm 0.10 \%$	(B)
Grey	8	8	$100 \mathrm{M} \Omega$	$\pm 0.05 \%$	
White	9	9	$1 \mathrm{G} \Omega$		
Gold			0.1Ω	$\pm 5 \%$	(J)
Silver			0.01Ω	$\pm 10 \%$	(K)

Figure 1: Resistor Color Chart.

Figure 2: $R_{\text {mystery }}$.

Solution:

From the chart, we see that the mystery resistor will be of the form: $3 k \times 10 \mathrm{k} \Omega$, where k represents a digit. Therefore, we have:

$$
300 \mathrm{k} \Omega \leq R_{\text {mystery }} \leq 390 \mathrm{k} \Omega
$$

For the rest of this problem, assume that you have an infinite supply of 5Ω and 20Ω resistors.
(b) What is the minimum number of resistors you need to create a resistor network with an equivalent resistance equal to 4Ω ?

Solution:

We note that $4 \Omega=5 \Omega| | 20 \Omega$. Therefore, we need 2 resistors.
(c) What is the minimum number of resistors you need to create a resistor network with an equivalent resistance equal to 9Ω ?

Solution:

We note that $9 \Omega=5 \Omega+5 \Omega| | 20 \Omega$. Therefore, we need $\mathbf{3}$ resistors.

6. (16 points) Analyzing a Resistor Network

Consider the following circuit.

(a) Each branch in the circuit is either labelled with a branch current direction or a branch voltage polarity, but not both. For the branches corresponding to R_{1} and R_{2}, label the missing quantity according to passive sign convention.

Solution:

We note that in passive sign convention that the current flows from the positive branch polarity to the negative branch polarity. Thus, R_{1} and R_{2} should be labelled as:

(b) All resistors have a value of $72 R$. Find the equivalent resistance between terminals C and $E, R_{C E}$, in terms of R, and also find the equivalent resistance between terminals A and $B, R_{A B}$, in terms of R. Assume that when finding the equivalent resistance between two terminals, all the other terminals are left as is, with nothing attached to them.

Solution: $\quad R_{C E}=72 R$, as there is a short from the side of resistor R_{5} to the terminal E. Whatever is parallel to that short will not matter: $0 \Omega \| R_{\text {anything }}=0 \Omega$.

$R_{A B}=\frac{2}{3}(72 R)=48 R$. To see that this is the case, do the following reductions:
Whatever is parallel to the short between 1 and 2 will not matter, for the same reasoning as before:

So we can combine series resistors R_{4} and R_{5} :

This leaves us with $R_{A B}=R_{1}\left\|\left(R_{4}+R_{5}\right)=72 R\right\| 144 R=48 R$.

The circuit has been duplicated again here for your convenience for parts (c) and (d). The labels (1), (2), and (3) correspond to locations in the circuit schematic.

(c) Write the KVL equation equation for the loop (A)-(1)-(D)-(3)-(B)-A in terms of V_{1} to V_{7} using passive sign convention.
Solution: $0=+V_{4}-V_{2}+V_{3}-V_{5}+V_{1}$.
(d) Write the KCL equation for the node associated with terminal (E) in terms of the currents I_{1} to I_{7} using passive sign convention.
Solution: $0=-I_{2}-I_{3}-I_{4}-I_{5}-I_{6}+I_{7}$

7. (8 points) Linearity of circuits

Consider the following circuit with resistor values $R_{1}=9 \Omega, R_{2}=1 \Omega, R_{3}=6 \Omega$, and $R_{4}=4 \Omega$.

(a) In order to analyze this circuit, Nirmaan wrote down a system of equations for the circuit and then cast it into matrix-vector form. However, some of the entries of the matrix were smudged, and Nirmaan needs your help filling in the missing entries. Fill in the missing values in the matrix below. Hint: Rows (2)-(4) correspond to KCL equations. Rows (5) - (8) correspond to Ohm's Law equations.

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \left(C_{1}\right) & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \left(C_{2}\right) & \left(C_{2}\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\left(C_{3}\right) & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & \left(C_{4}\right) & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & \left(C_{5}\right) & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & \left(C_{6}\right) & 0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{c}
V_{s} \\
0 \\
I_{s} \\
-I_{s} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solution:

Working our way through each row:

- Row 1: This row maps to the equation: $C_{1} V_{1}=V_{s}$. Since $V_{1}=V_{s}, C_{1}=1$.
- Row 3: This row maps to the equation: $C_{2}\left(I_{2}+I_{3}\right)=I_{s}$. By KCL at the node labelled by V_{3}, $I_{s}+I_{1}+I_{2}=0$. That implies that $C_{2}=-1$.
- Row 5: This row maps to the equation: $C_{3} I_{1}+V_{1}-V_{2}-0$. As given in the hint, this row corresponds to an Ohm's Law equation. We note that I_{1} is the current flowing through R_{1}. Ohm's law for R_{1}, following passive sign convention, is $V_{2}-V_{1}=I_{1} R_{1}$. Thus, $C_{3}=R_{1}$.
- Rows 6-8: Similar analysis as row 5 . We get that $C_{4}=R_{2}, C_{5}=R_{3}$, and $C_{6}=R_{4}$.
(b) Now consider the same circuit, except with different resistor values.

When $V_{s}=15 V, I_{s}=-8 A$, and $R_{1}=R_{2}=R_{3}=R_{4}=4 \Omega$, we have that the solution to the above system of equations is the vector:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4 \\
4 \\
8 \\
15 \\
-17 \\
-33 \\
32
\end{array}\right]
$$

What is the power dissipated across the voltage source, V_{s} ? What is the power dissipated across the resistor R_{3} ?

Solution:

The power dissipated across the voltage source is given by:

$$
P_{V_{S}}=I_{1} V_{s}=(-8 \mathrm{~A})(15 \mathrm{~V})=-120 \mathrm{~W}
$$

The power dissipated across R_{3} is given by:

$$
P_{R_{3}}=I_{3}\left(V_{2}-V_{3}\right)=(4 \mathrm{~A})(16 \mathrm{~V})=64 \mathrm{~W}
$$

8. Superposition ($\mathbf{1 2}$ points)

Consider the following circuit:

Let $R_{1}=15.0 \Omega, R_{2}=25.0 \Omega, R_{3}=35.0 \Omega, I_{s}=1.0 \mathrm{~A}$, and $V_{s}=4.0 \mathrm{~V}$.
(a) With the current source turned on and the voltage source turned off, find the current $I_{R_{3}}$.

Solution:

We note that that I_{s} is split between R_{2} and R_{3} and therefore we can use the current divider relation (here the notation $I_{R_{3}, I_{s}}$ represents the current across R_{3} with only I_{s} turned on.):

$$
I_{R_{3}, I_{s}}=\frac{I_{s} R_{2}}{R_{2}+R_{3}}=\frac{(1 \mathrm{~A})(25 \Omega)}{25 \Omega+35 \Omega}=0.42 \mathrm{~A} .
$$

(b) With the voltage source turned on and the current source turned off, find the voltage drop across R_{3}, $V_{R_{3}}$.

Solution:

We note that when the current source is turn off it becomes an open circuit. Thus, we are left with a voltage divider.

$$
V_{R_{3}, V_{s}}=\frac{V_{s} R_{3}}{R_{2}+R_{3}}=\frac{(4 \mathrm{~V})(35 \Omega)}{25 \Omega+35 \Omega}=2.33 \mathrm{~V}
$$

(c) With both sources turned on, find the power dissipated across R_{3}.

Solution:

Note that since power is not a linear quantity, you cannot add the powers dissipated through the resistor with only one source on.
Thus, we first find the missing quantities. The voltage drop across R_{3} when the current source is on is given by:

$$
\begin{aligned}
& V_{R_{3}, I_{s}}=I_{R_{3}, I_{s}} R_{3}=\frac{I_{s} R_{2} R_{3}}{R_{2}+R_{3}} \\
& I_{R_{3}, V_{s}}=\frac{V_{R_{3}, V_{s}}}{R_{3}}=\frac{V_{s}}{R_{2}+R_{3}}
\end{aligned}
$$

Thus, we have:

$$
\begin{gathered}
V_{R_{3}}=V_{R_{3}, V_{s}}+V_{R_{3}, I_{s}}=\frac{V_{s} R_{3}+I_{s} R_{2} R_{3}}{R_{2}+R_{3}} \\
I_{R_{3}}=I_{R_{3}, V_{s}}+I_{R_{3}, I_{s}}=\frac{I_{s} R_{2}+V_{s}}{R_{2}+R_{3}}
\end{gathered}
$$

Thus, the power dissipated is:

$$
P_{R_{3}}=I_{R_{3}} V_{R_{3}}=\frac{R_{3}\left(I_{s} R_{2}+V_{s}\right)^{2}}{\left(R_{2}+R_{3}\right)^{2}}=\frac{(35 \Omega)((1 \mathrm{~A})(25 \Omega)+4 \mathrm{~V})^{2}}{(25 \Omega+35 \Omega)^{2}}=8.18 \mathrm{~W}
$$

9. Thévenin Equivalence (12 points)

(a) Find the Thévenin resistance $R_{t h}$ of the circuit shown below, with respect to its terminals A and B. Assume that $R_{1}=4 R, R_{2}=R$ and $R_{3}=9 R$.

Solution: To find the Thévenin resistance, we null out the voltage source (which shorts out R_{1}) and find the equivalent resistance which is simply:

$$
R_{t h}=R_{2} \| R_{3}=\frac{(9 R)(R)}{9 R+R}=\frac{9}{10} R
$$

(b) Now a load resistor, $R_{L}=9 R$, is connected across terminals A and B as shown in the circuit below. Find the supply voltage, V_{s}, such that 1 mW is dissipated across the load resistor. Let $R=36 \mathrm{k} \Omega$.

Solution:

To help simplify the analysis, we replace the circuit by its Thévenin equivalent circuit. In order to do so, we first need to finds the Thévenin voltage. That is simply the open circuit voltage, $V_{A B}$, in the original circuit, which is simply a voltage divider:

$$
V_{t h}=\frac{R_{3}}{R_{2}+R_{3}} V_{s}=\frac{9 R}{9 R+R} V_{s}=0.9 V_{s}
$$

Thus, the circuit can be simplified to:

The power through the load resistor is given by:

$$
P_{R_{L}}=\left(\frac{V_{t h}}{R_{L}+R_{t h}}\right)^{2} R_{L}=\left(\frac{\frac{R_{3}}{R_{2}+R_{3}} V_{s}}{R_{L}+\left(R_{2} \| R_{3}\right)}\right)^{2} R_{L}
$$

Solving for V_{s}, we get:

$$
V_{s}=\sqrt{P_{R_{L}}} \frac{R_{L}+\left(R_{2} \| R_{3}\right)}{\sqrt{R_{L}} \frac{R_{3}}{R_{2}+R_{3}}}=\sqrt{P_{R_{L}}} \frac{9.9 R}{3 \sqrt{R}(0.9)}=\frac{11}{3} \sqrt{P_{R_{L}} R}
$$

Substituting numerical values, we get, $V_{s}=\frac{11}{3} \sqrt{(1 \mathrm{~mW})(36 \mathrm{k} \Omega)}=22 \mathrm{~V}$.
(c) We modify the circuit as shown below:

Find a symbolic expression for $V_{\text {out }}$ as a function of V_{s}.

Solution:

We note that $V_{A B}$ simply equals $V_{t h}=\frac{R_{3}}{R_{3}+R_{2}} V_{s}=0.9 V_{s}$. Then, noting that R_{0} and R_{L} are in parallel, we have that $V_{\text {out }}=g\left(0.9 V_{s}-V_{\text {out }}\right)\left(R_{0} \| R_{L}\right)$. Solving for $V_{\text {out }}$, we get:

$$
V_{\text {out }}=0.9 V_{s} \frac{g R_{L} \| R_{0}}{1+g R_{L} \| R_{0}}
$$

10. Capacitive Charge Sharing (16 points)

(a) Consider the circuit above with $C_{1}=6 \mu \mathrm{~F}$ and $C_{2}=9 \mu \mathrm{~F}$. Suppose that initially the ϕ_{1} switches are closed and the ϕ_{2} switch is open such that C_{1} and C_{2} are charged through the corresponding voltage sources $V_{s 1}=6 \mathrm{~V}$ and $V_{s 2}=17 \mathrm{~V}$. How much charge is on C_{1} and C_{2} ?
Solution:
In phase 1, the circuit is given by:

Since the charge on a capacitor plate is given by $Q=C V$, we have:

$$
\begin{aligned}
& q_{1}=C_{1} V_{s 1}=(6 \mu \mathrm{~F})(6 \mathrm{~V})=36 \mu \mathrm{C} \\
& q_{2}=C_{2} V_{s 2}=(9 \mu \mathrm{~F})(17 \mathrm{~V})=153 \mu \mathrm{C}
\end{aligned}
$$

(b) Now suppose that some time later, the ϕ_{1} switches open and the ϕ_{2} switch closes. What is the value of voltage u_{1} at steady state?

Solution:

The circuit in phase 2 is given by:

The total charge on capacitors C_{1} and C_{2} will be conserved after switch ϕ_{1} is opened. That charge is $Q_{t o t}=q_{1}+q_{2}$. Also note that during phase 2 the capacitors are connected in parallel so they will both have $V_{C 1}=V_{C 2}=u_{1}$. Therefore,

$$
\begin{aligned}
Q_{t o t} & =C_{1} V_{s 1}+C_{2} V_{s 2} \\
u_{1} & =\frac{Q_{t o t}}{C_{1}+C_{2}}=\frac{C_{1} V_{s 1}+C_{2} V_{s 2}}{C_{1}+C_{2}}=\frac{(6 \mu \mathrm{~F})(6 \mathrm{~V})+(9 \mu \mathrm{~F})(17 \mathrm{~V})}{6 \mu \mathrm{~F}+9 \mu \mathrm{~F}}=12.6 \mathrm{~V}
\end{aligned}
$$

(c) Now let's look at the following circuit. Once again, let $C_{1}=6 \mu \mathrm{~F}$ and $C_{2}=9 \mu \mathrm{~F}$. Let $V_{s}=7 \mathrm{~V}$.

Suppose that initially the ϕ_{1} switches are closed and the ϕ_{2} switches are open. How much charge is on C_{1} and C_{2} ?

Solution:

Rewriting the circuit in phase 1 we have:

Therefore the charge on each capacitor is simply:

$$
\begin{aligned}
& q_{1}=C_{1} V_{s}=(6 \mu \mathrm{~F})(7 \mathrm{~V})=42 \mu \mathrm{C} \\
& q_{2}=C_{2} V_{s}=(9 \mu \mathrm{~F})(7 \mathrm{~V})=63 \mu \mathrm{C}
\end{aligned}
$$

(d) Now suppose that some time later, the ϕ_{1} switches open and the ϕ_{2} switches close. What is the value of voltage $V_{\text {out }}$ at steady state?
Solution: Rewriting the circuit in phase 2 we have:

Notice that the charge will be conserved on nodes $V_{\text {out }}, V_{\text {mid }}$.
Identifying all the capacitor plates that are connected on those nodes during phase 1 and calculating the charge onto them in phase 1 we have that:
Node $V_{\text {mid }}$:

$$
Q_{V_{m i d}}^{\phi_{1}}=\left(V_{s}-0\right) C_{1}-\left(V_{s}-0\right) C_{2}
$$

Node $V_{\text {out }}$:

$$
Q_{V_{\text {out }}}^{\phi_{1}}=\left(V_{s}-0\right) C_{2}
$$

Looking at phase 2 and calculating the charge onto the same nodes we have: Node $V_{m i d}$:

$$
Q_{V_{\text {mid }}}^{\phi_{2}}=\left(V_{\text {mid }}-V_{s}\right) C_{1}-\left(V_{\text {out }}-V_{\text {mid }}\right) C_{2}
$$

Node $V_{\text {out }}$:

$$
Q_{V_{\text {out }}}^{\phi_{2}}=\left(V_{\text {out }}-V_{\text {mid }}\right) C_{2}
$$

Equating the charge on the corresponding plates for phases 1 and 2 we get a 2×2 system of linear equations:

$$
\begin{align*}
V_{s} C_{1}-V_{s} C_{2} & =\left(V_{\text {mid }}-V_{s}\right) C_{1}-\left(V_{\text {out }}-V_{\text {mid }}\right) C_{2} \tag{1}\\
V_{s} C_{2} & =\left(V_{\text {out }}-V_{\text {mid }}\right) C_{2} \tag{2}
\end{align*}
$$

Substituting (2) into (1) yields:

$$
\begin{gathered}
V_{s} C_{1}-V_{s} C_{2}=\left(V_{\text {mid }}-V_{s}\right) C_{1}-V_{s} C_{2} \\
V_{\text {mid }}=2 V_{s}
\end{gathered}
$$

Finally substituting $V_{\text {mid }}$ into (2):

$$
V_{\text {out }}=3 V_{s}=21 \mathrm{~V}
$$

Which means that we managed to create $3 V_{s}$ with a voltage source of only V_{s} !

11. Flash Memory ($\mathbf{1 6}$ points)

Solid state drives depend on charge to store information. In several integrated circuit applications, the charge is stored on a floating node of a transistor. A cartoon of such a transistor and its corresponding circuit model are shown below. Note: You do not need to understand transistors in order to do this problem.

Figure 3: Transistor schematic for flash memory.

Figure 4: Corresponding circuit model for flash memory transistor from Figure 3 ,

Depending on the amount of charge on the floating node, the transistor is either storing a " 0 " bit or a " 1 " bit. In order to write a bit, electrons are added or removed from the "floating gate node" (labelled by $V_{F G}$ in Figure 4), which is capacitively coupled to the gate and the source of the transistor as shown in Figure 3. Therefore, during transistor operation, there can be a net charge Q_{T} at the node $V_{F G} \square^{1}$
In each part of the problem, the values of each parameter do not change, and are given in the table below:

Component Parameters	
$V_{\text {in }}$	2.0 V
C_{G}	35.0 pF
C_{S}	3.0 pF
g_{m}	$300.0 \mu \mathrm{AV}^{-1}$
R_{L}	$35.0 \mathrm{k} \Omega$

[^0](a) Assuming that the floating gate node $\left(V_{F G}\right)$ has no net charge $\left(Q_{T}=0\right)$. Find $V_{F G}$ in terms of $V_{i n}, C_{G}$, and C_{S}, and then plug in values from the table.
Solution:
Since there is no charge in the floating gate node, the C_{G} and C_{S} are in series. Thus, the equivalent capacitance is:
$$
C_{\mathrm{eq}}=\frac{C_{G} C_{S}}{C_{G}+C_{S}}
$$

Additionally, since the capacitors are in series, the charges on both capacitors are the same:

$$
Q_{S}=Q_{G}=C_{\mathrm{eq}} V_{i n}
$$

Therefore, we have that $V_{F G}$ is given by:

$$
\begin{aligned}
V_{F G} & =\frac{Q_{\mathrm{top}}}{C_{S}}=\frac{V_{i n} C_{\mathrm{eq}}}{C_{S}}=V_{i n} \frac{C_{G}}{C_{G}+C_{S}} \\
& =(2 \mathrm{~V}) \frac{(35 \mathrm{pF})}{35 \mathrm{pF}+3 \mathrm{pF}}=1.842 \mathrm{~V}
\end{aligned}
$$

(b) Now let's assume there is a net charge of $Q_{T}=-20.0 \mathrm{pC}$ on the floating gate node. Find $V_{F G}$ as a function of $C_{G}, C_{S}, V_{i n}$, and Q_{T} and then plug in the numerical values. (Hint: Use conservation of charge.)

Solution:

By charge conservation at the floating gate node, we have:

$$
Q_{T}=-C_{G}\left(V_{i n}-V_{F G}\right)+C_{S}\left(V_{F G}\right)
$$

Solving for $V_{F G}$, we have:

$$
V_{F G}=\frac{Q_{T}+C_{G} V_{i n}}{C_{G}+C_{S}}=\frac{-20.0 \mathrm{pC}+(35 \mathrm{pF})(2 \mathrm{~V})}{35 \mathrm{pF}+3 \mathrm{pF}}=1.316 \mathrm{~V}
$$

(c) Now, in order to read which bit the transistor is storing, we measure the value of $V_{\text {out }}$, which is the voltage drop across R_{L}, as shown in Figure 4. Assuming that the threshold for reading a " 1 " bit is $V_{\text {out }} \leq-1 \mathrm{~V}$, what condition must $V_{F G}$ satisfy? (Note: This part is independent of the previous two subparts.)

Solution:

The output voltage is given by:

$$
\begin{aligned}
& V_{\text {out }}=-g_{m} V_{F G} R_{L} \leq-1 \mathrm{~V} \\
& V_{F G} \geq \frac{1}{g_{m} R_{L}}=\frac{1}{\left(300 \mu \mathrm{AV}^{-1}\right)(35 \mathrm{k} \Omega)}=0.095 \mathrm{~V}
\end{aligned}
$$

(d) Regardless of the answer you got in part (c), assume that the threshold for reading a " 1 " is $V_{F G} \geq 1 \mathrm{~V}$. How much net charge, Q_{T} do you need on the floating gate node in order to read a " 1 "?

Solution:

From part (b), we have that:

$$
V_{F G}=\frac{Q_{T}+C_{G} V_{i n}}{C_{G}+C_{S}} \geq 1 \mathrm{~V}
$$

This requires that:

$$
Q_{T} \geq(1 V)\left(C_{G}+C_{S}\right)-V_{i n} C_{G}=-32 \mathrm{pC}
$$

12. A Versatile Opamp Circuit ($\mathbf{1 2}$ points)

The following circuit is a commonly used integrated circuit (IC) that can be configured in a variety of ways to achieve different functionalities. The main advantage of this IC is that it provides precise circuit functions without the need of a high precision resistor network.

In order to see this circuit's versatility, we will configure this circuit in different ways to achieve different functionalities. For each subpart, let $v_{1}=1.2 \mathrm{~V}$ and $v_{2}=1.8 \mathrm{~V}$
(a) Determine the voltage at O for the following configuration.

Solution:

By superposition, we note that the voltage at V^{+}is given by:

$$
V^{+}=\frac{v_{1}+v_{2}}{2}
$$

The rest of the circuit looks like a non-inverting amplifier with a gain of $1+\frac{25 \mathrm{k} \Omega}{25 \mathrm{k} \Omega}=2$. Therefore, the output voltage is:

$$
V_{O}=2 V^{+}=v_{1}+v_{2}=1.2 \mathrm{~V}+1.8 \mathrm{~V}=3.0 \mathrm{~V}
$$

(b) Determine the voltage at O for the following configuration.

Solution:

Through the voltage divider equation, we note that the voltages at the input terminals of the op-amp are given by:

$$
\begin{aligned}
& V^{+}=\frac{v_{1}}{2} \\
& V^{-}=\frac{v_{2}-V_{O}}{2}
\end{aligned}
$$

By the Golden Rules, these must be equal to each other. Therefore,

$$
\begin{aligned}
\frac{v_{1}}{2} & =\frac{v_{2}-V_{O}}{2} \\
V_{O} & =v_{2}-v_{1}=1.2 \mathrm{~V}-1.8 \mathrm{~V}=-0.6 \mathrm{~V}
\end{aligned}
$$

(c) Determine the voltage at O for the following configuration.

Solution:

Like in part (a), by superposition, we note that the voltage at V^{+}is given by:

$$
V^{+}=\frac{v_{1}+v_{2}}{2}
$$

We note that the resistors connected to B and D do not affect the circuit as no current is flowing through them. Therefore, $V_{O}=V^{-}=V^{+}=\frac{v_{1}+v_{2}}{2}$.

13. Odometer (16 points)

You are designing a circuit for an car odometer, which measures the distance the car has travelled. The main circuit element that you have is a resistor, whose resistance changes as a function of car velocity, which varies with time:

$$
R_{\mathrm{car}}(t)=\frac{4.0 \alpha R_{0}}{v(t)}
$$

where $R_{0}=100.0 \mathrm{k} \Omega, \alpha=60.0 \frac{\mathrm{~m}}{\mathrm{~s}}$, and v is the velocity of the car in $\frac{\mathrm{m}}{\mathrm{s}}$. Throughout the problem, assume that the capacitor is initially uncharged.
(a) Not knowing where to start, you ask a senior member of the design team, who went to Berkeley, and he gives you the following circuit to get you started.

As a first step, determine $V_{\text {out }}$ in terms of $t, V_{i n}, \alpha, R_{0}, v(t)$, and C. (Hint: Apply KCL and use the fact that $I=C \frac{d V}{d t}$.)
Solution:
Let's write the KCL equation at V^{-}assuming all currents are leaving that node.

$$
\begin{aligned}
i_{R_{\text {car }}}+i_{C} & =0 \\
i_{R_{\text {car }}} & =-i_{C} \\
i_{C} & =C \frac{d\left(0-V_{\text {out }}(t)\right)}{d t} \\
\frac{0-V_{\text {in }}}{R_{\text {car }}} & =C \frac{d\left(V_{\text {out }}(t)-0\right)}{d t} \\
-\frac{V_{\text {in }}}{R_{\text {car }} C} & =\frac{d V_{\text {out }}(t)}{d t} \\
V_{\text {out }}(t) & =-\int_{0}^{t} \frac{V_{\text {in }}}{R_{\text {car }} C} d \tau \\
V_{\text {out }}(t) & =-\frac{1}{4 \alpha R_{0} C} \int_{0}^{t} V_{\text {in }} v(t) d \tau
\end{aligned}
$$

(b) Regardless of the answer to part (a), the output of the above circuit is given by: $V_{\text {out }}(t)=-\frac{1}{\alpha R_{0} C} \int_{0}^{t} V_{\text {in }} v(\tau) d \tau$. Now, you decide to set $V_{\text {in }}=1 \mathrm{~V}$. Your odometer increases its distance reading by 1 when the voltage, $V_{\text {out }}$, decreases by 0.1 V .

If you want the odometer to change its distance reading by 1 when the car travels 1 kilometer, what should C be? Hint: The distance travelled by the car is given by $\int_{0}^{t} v(\tau) d \tau$.
Solution:
Substituting $V_{i n}$, we have:

$$
V_{\text {out }}=-\frac{1 \mathrm{~V}}{\alpha R_{0} C} \int_{0}^{t} v(t) d \tau
$$

Since $\int_{0}^{t} v(t) d \tau$ represents the distance travelled by the car, we can set that to 1 km and set $V_{\text {out }}=-0.1 \mathrm{~V}$ and solve for C.

$$
C=\frac{10(1 \mathrm{~km})}{\alpha R_{0}}=\frac{10(1 \mathrm{~km})}{\left(60 \mathrm{~m} \mathrm{~s}^{-1}\right)(100 \mathrm{k} \Omega)}=1.67 \mathrm{mF}
$$

(c) Your car has the following velocity versus time graph. How much energy is dissipated through the car resistor, $R_{\mathrm{car}}(t)=\frac{4.0 \alpha R_{0}}{v(t)}$? Assume that $V_{\text {in }}$ for the circuit given in part (a) is still 1 V .

Solution:

The power through a resistor is given by $\frac{V^{2}}{R}$. We note that the potential difference across the resistor is fixed at 1 V . The total energy dissipated is given by $E=\int P(t) d t$. Therefore,

$$
E=\int_{0}^{90} \frac{1 \mathrm{~V}^{2} v}{4 \alpha R_{0}} d \tau=\frac{1}{4 \alpha R_{0}}\left(50(30)+\frac{1}{2}(30)(30)\right)=\frac{1}{4 \alpha R_{0}}(1950)=81.25 \mu \mathrm{~J}
$$

(d) In order to add functionality, you want to add a comparator that will alert the driver when a certain number of kilometers has passed, using the odometer you designed in part (b). You do this with the following circuit:

$V_{\text {out, ckt1 }}=-\frac{1}{\alpha R_{0} C} \int_{0}^{t} V_{i n} v(\tau) d \tau$ is the output of odometer circuit shown in part (a). If you want the comparator to change states after the car has driven 180.0 km , given that we require $R_{\text {left }}+R_{\text {right }}=$ $70.0 \mathrm{k} \Omega$, what should the value of $R_{\text {left }}$ be?

Solution:

The voltage at the negative terminal is given by:

$$
V^{-}=\frac{(-20 \mathrm{~V}) R_{\text {right }}}{R_{\text {right }}+R_{\text {left }}}
$$

180 km corresponds to a voltage output of -18 V from the first circuit. Thus, we want the voltage that the negative terminal of the op-amp to be at -18 V . This can be done by setting $R_{\text {left }}=7 \mathrm{k} \Omega$.

[^0]: ${ }^{1}$ The method through which charge is added or removed from the floating gate is known as Fowler-Nordheim tunneling, where electrons are quantum mechanically tunnelled to the floating gate. In this problem, we will not worry about how the net charge is added to the floating gate node at the circuit level.

