EE 16B Designing Information Devices and Systems II

1. Open-Loop System

Consider the open-loop system shown above, with $A=\left[\begin{array}{ll}0.9 & 0.8 \\ 0.5 & 0.6\end{array}\right], B=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1\end{array}\right]$.
(a) What is the size of the state vector $x(k)$? The input vector $u(k)$? The output vector $y(k)$?
(b) Assuming $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right], u(k)=0$ for all k, find the state $x(k)$ of the system for $k=0$ to 3 .
(c) Calculate the eigenvalues of matrix A.
(d) Would you consider this a "stable" system? Explain your answer.

2. Closed-Loop System

Consider the open-loop system shown above, with the same A, B, and C as in problem 1. The controller is implemented with parameter $K=0.6$.
(a) Find the dimensions of the all of the vectors and matrices in the system.

Vectors: $x(k), y_{d}(k), e(k), u(k), y(k) \quad$ Matrices: $A, B, C, K, A_{C L}$, and $B_{C L}$.
(b) Find $A_{C L}$ and $B_{C L}$, the new state matrices that define the closed-loop system.
(c) Assuming $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right], y_{d}(k)=0$ for all k, find the state $x(k)$ of the system for $k=0$ to 3 .
(d) Calculate the eigenvalues of matrix $A_{C L}$.
(e) Would you consider this a "stable" system? Explain your answer.

