EE 16B
 Designing Information Devices and Systems II

 Fall 2015Solutions: Courtesy of Quincy Huynh.

1. Open-Loop System

Consider the open-loop system shown above, with $A=\left[\begin{array}{ll}0.9 & 0.8 \\ 0.5 & 0.6\end{array}\right], B=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1\end{array}\right]$.
(a) What is the size of the state vector $x(k)$? The input vector $u(k)$? The output vector $y(k)$? Solutions: A is $2 \times 2, B$ is 2×1 and C is 1×2. From the equations:

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)
\end{aligned}
$$

$\therefore x(k)$ is a $2 \mathrm{x} 1, u(k)$ is a 1 x 1 and $y(k)$ is a 1 x 1 .
(b) Assuming $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right], u(k)=0$ for all k, find the state $x(k)$ of the system for $k=0$ to 3 . Solutions:

$$
\begin{aligned}
& x(k)=A^{k} x(0) \\
& x(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(1)=\left[\begin{array}{ll}
0.9 & 0.8 \\
0.5 & 0.6
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(1)=\left[\begin{array}{l}
1.7 \\
1.1
\end{array}\right] \\
& x(2)=\left[\begin{array}{ll}
0.9 & 0.8 \\
0.5 & 0.6
\end{array}\right]^{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(2)=\left[\begin{array}{l}
2.41 \\
1.51
\end{array}\right] \\
& x(3)=\left[\begin{array}{ll}
0.9 & 0.8 \\
0.5 & 0.6
\end{array}\right]^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(3)=\left[\begin{array}{l}
3.377 \\
2.111
\end{array}\right]
\end{aligned}
$$

(c) Calculate the eigenvalues of matrix A.

Solutions:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
0.9-\lambda & 0.8 \\
0.5 & 0.6-\lambda
\end{array}\right| \\
0 & =(0.9-\lambda)(0.6-\lambda)-0.4 \\
0 & =\lambda^{2}-1.5 \lambda+0.14 \\
0 & =(\lambda-1.4)(\lambda-0.1) \\
\lambda & =1.4,0.1
\end{aligned}
$$

(d) Would you consider this a "stable" system? Explain your answer.

Solutions: Since $\exists \lambda$ such that $\lambda>1$, the system is not stable. This means that as $k \rightarrow \infty, x(k) \rightarrow \infty$.

2. Closed-Loop System

Consider the open-loop system shown above, with the same A, B, and C as in problem 1. The controller is implemented with parameter $K=0.6$.
(a) Find the dimensions of the all of the vectors and matrices in the system.

Vectors: $x(k), y_{d}(k), e(k), u(k), y(k) \quad$ Matrices: $A, B, C, K, A_{C L}$, and $B_{C L}$.
Solutions: A is $2 \times 2, B$ is 2×1 and C is 1×2. From the equations:

$$
\begin{aligned}
x(k+1) & =A_{C L} x(k)+B_{C L} y_{d}(k) \\
x(k+1) & =(A-B K C) x(k)+(B K) y_{d}(k) \\
y(k) & =C x(k)
\end{aligned}
$$

$\therefore x(k)$ is a $2 \mathrm{x} 1, y_{d}(k)$ is a $1 \mathrm{x} 1, e(k)$ is a $1 \mathrm{x} 1, u(k)$ is a $1 \mathrm{x} 1, y(k)$ is a 1 x 1 . $A_{C L}$ is a 2×2 and $B_{C L}$ is a 2×1.
(b) Find $A_{C L}$ and $B_{C L}$, the new state matrices that define the closed-loop system.

Solutions:

$$
\begin{aligned}
A_{C L} & =A-B K C \\
A_{C L} & =\left[\begin{array}{ll}
0.9 & 0.8 \\
0.5 & 0.6
\end{array}\right]-0.6\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
\mathbf{A}_{\mathbf{C L}} & =\left[\begin{array}{cc}
0.9 & -0.4 \\
0.5 & 0
\end{array}\right] \\
B_{C L} & =B K \\
\mathbf{B}_{\mathbf{C L}} & =\left[\begin{array}{l}
1.2 \\
0.6
\end{array}\right]
\end{aligned}
$$

(c) Assuming $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right], y_{d}(k)=0$ for all k, find the state $x(k)$ of the system for $k=0$ to 3 .

Solutions: Since $y_{d}(k)=0 \forall k$, then $B_{C L} y_{d}(k)=0 \forall k$.

$$
\begin{aligned}
& x(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(1)=\left[\begin{array}{ll}
0.9 & -0.4 \\
0.5 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(1)=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right] \\
& x(2)=\left[\begin{array}{cc}
0.9 & -0.4 \\
0.5 & 0
\end{array}\right]^{2} \text { âĂćc }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(2)=\left[\begin{array}{l}
0.25 \\
0.25
\end{array}\right] \\
& x(3)=\left[\begin{array}{ll}
0.9 & -0.4 \\
0.5 & 0
\end{array}\right]^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x(3)=\left[\begin{array}{l}
0.125 \\
0.125
\end{array}\right]
\end{aligned}
$$

(d) Calculate the eigenvalues of matrix $A_{C L}$.

Solutions:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
0.9-\lambda & -0.4 \\
0.5 & -\lambda
\end{array}\right| \\
0 & =(0.9-\lambda)(-\lambda)+0.2 \\
0 & =\lambda^{2}-0.9 \lambda+0.2 \\
0 & =(\lambda-0.5)(\lambda-0.4) \\
\lambda & =0.5,0.4
\end{aligned}
$$

(e) Would you consider this a "stable" system? Explain your answer.

Solutions: Since both $\lambda<1$, the system is stable. This means that as $k \rightarrow \infty, x(k) \rightarrow 0$. Notice that the initial condition $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is the eigenvector corresponding to $\lambda=0.5$, so $x(k)$ became a smaller scaled version of $x(0)$ as k increased.

