EE16B Designing Information Devices and Systems II Fall 2015 Section 11B

Partner 1:	Partner 2:

Rate yourself on your understanding/confidence for each midterm topic. Use a scale from 1 to 5, where 5 is very confident.

Topic	Details or Examples	Partner 1 Rating	Partner 2 Rating
Digital Logic	nMOS and pMOS transistorsDigital logic gatesBoolean algebra		
Digital Gate Delay	 1st-order differential equations RC transistor models 		
Digital System Power	Dynamic voltage scaling		
Sampling and Aliasing	Sampling continuous-time signalsAliasing for sine and cosine functionsRotating wheel effect		
Signal Reconstruction	Nyquist sampling theoremPeriodicity of sampled signalsIdeal low-pass filter placement		
Frequency Response	Magnitude responsePhase responseBode plots		
Impedance	Impedance of inductors and capacitorsFinding frequency response of a circuit		
X/O Plots	 Making X/O plots via vector subtraction Finding frequency response from X/O plots 		
State Space Models	Discrete-time state space formulationOpen loop responseClosed loop response		
System Stability	Eigenvalues and eigenvectorsLinear phase portraits		

Now choose one of the topics above, and write and solve a problem about that topic that coul reasonably appear on the midterm.
Topic:
Problem Statement
Solution
JOINGIOII