EE 16B Fall 2015

Designing Information Devices and Systems II

Solutions: By John Noonan.

1. Phase Response

Sketch the phase (in radians) vs. $\log \omega$ for the filter specified below with $\omega_{1}=10^{3} \mathrm{rad} / \mathrm{s}$ and $\omega_{2}=10^{5} \mathrm{rad} / \mathrm{s}$.

$$
H(\omega)=\frac{-5}{1+j \omega / \omega_{1}} \frac{1}{1+j \omega / \omega_{2}}
$$

Hint: You may want to figure out the phase responses of each component of $H(\omega)$ individually and then combine them together.
Solutions:
$\measuredangle H=\measuredangle \frac{-5}{1+\frac{j \omega}{\omega_{1}}}+\measuredangle \frac{1}{1+\frac{j \omega}{\omega_{2}}}$
$=\pi-\arctan \left(\frac{\omega}{\omega_{1}}\right)-\arctan \left(\frac{\omega}{\omega_{2}}\right)$
As $\omega \rightarrow 0, \measuredangle H \rightarrow \pi$
As $\omega \rightarrow \infty, \measuredangle H \rightarrow 0$
At $\omega=\omega_{1}, \measuredangle H \approx \frac{3 \pi}{4}$
At $\omega=\omega_{2}, \measuredangle H \approx \frac{\pi}{4}$

2. Filter Design

Consider a system input that has a signal at 100 Hz and unwanted noise at 10 kHz . For the filter described below, find the value of ω_{c} that attenuates the unwanted noise by a factor of 20 . What is the gain of the desired signal from this filter?

$$
H(\omega)=\frac{2}{1+j \omega / \omega_{c}}
$$

Solutions: $\frac{2}{\sqrt{1^{2}+\left(\frac{10000 * 2 \pi}{\omega_{c}}\right)^{2}}}=\frac{1}{20}$
$1^{2}+\left(\frac{10000 * 2 \pi}{\omega_{c}}\right)^{2}=40^{2}$
$\left(\frac{10000-2 \pi}{\omega_{c}}\right)^{2}=40^{2}-1$
$\omega_{c}=\frac{10000}{\sqrt{1599}} * 2 \pi$
$H(\omega)=\frac{2}{1+\frac{j \omega}{\omega_{c}}}$
$=\frac{2}{\sqrt{1^{2}+\left(\frac{100}{\sqrt{1599 * 10000}}\right)^{2}}}$
$=\frac{2}{\sqrt{1^{2}+\left(\frac{1}{\sqrt{1599 * 100}}\right)^{2}}}$
$=1.86$

3. Dynamic Voltage and Frequency Scaling

A low-power microcontroller operates in three modes. In high-performance mode, the processor operates at a supply voltage of $V_{D D}=1.2 \mathrm{~V}$ and a frequency of 1 MHz and consumes $100 \mu \mathrm{~W}$ of power. Assume the resistance of the gates in the microcontroller is proportional to $1 /\left(V_{D D}-0.4 \mathrm{~V}\right)$.
(a) In low-power mode, the processor operates at $V_{D D}=0.48 \mathrm{~V}$. What is the highest possible operating frequency in this mode? How much power is consumed?
Solutions: $\frac{f_{2}}{f_{1}}=\frac{V_{d d_{2}}-0.4}{V_{d d_{1}}-0.4}=\frac{0.8}{0.08}=\frac{1}{10}$, so $f_{2}=\frac{1}{10} f_{1}=100 \mathrm{kHz}$.

$$
\begin{aligned}
& \frac{P_{2}}{P_{1}}=\frac{f_{2}}{f_{1}}\left(\frac{V_{d d_{2}}}{V_{d d_{1}}}\right)^{2}=\frac{1}{10} \frac{1}{2.5^{2}}=\frac{1}{62.5} \\
& P_{2}=P_{1} * \frac{1}{62.5}=\frac{100 \mu W}{62.5}=\frac{8}{5} \mu \mathrm{~W}=1.6 \mu \mathrm{~W}
\end{aligned}
$$

(b) In sleep mode, the process operates at a frequency of just 1 kHz . What is the lowest possible operating voltage that would allow operation at this frequency? How much power is consumed?
Solutions: $\frac{f_{3}}{f_{1}}=\frac{V_{d d_{3}}-0.4}{V_{d d_{1}}-0.4}$

$$
\begin{aligned}
& \frac{1}{1000}=\frac{V_{d d_{3}}-0.4}{0.8} \\
& V_{d d_{3}}=0.4+8 * 10^{-4} \\
& =0.4008 \mathrm{~V} \\
& \frac{P_{3}}{P_{1}}=\frac{f_{3}}{f_{1}}\left(\frac{V_{d d_{3}}}{V_{d d_{1}}}\right)^{2} \\
& \frac{V_{d d_{3}}}{V_{d d_{1}}}=\frac{0.4008 V}{1.2 V} \approx \frac{1}{3} \\
& =\frac{1}{1000} *\left(\frac{1}{3}^{2}\right)=\frac{1}{9000} \\
& P_{3}=\frac{1}{9000} * 100 \mu W=\frac{1}{90} \mu W=11.1 n W
\end{aligned}
$$

