EE 16B Fall 2015
 Designing Information Devices and Systems II
 Section 3B

1. DFT

Determine the DFT for each signal described below.
(a) $x(n)=\sin \left(\frac{2 \pi}{5} n\right)+\cos \left(\frac{4 \pi}{5} n\right), \quad \forall n \quad$, with window of length 5
(b) $x(n)=\delta(n)-\delta(n-2)$, with window of length 6
2. Matrix Multiplication Suppose $x(n)$ is the input signal applied to a linear time-invariant (LTI) system characterized by the impulse response $h: \mathbb{Z} \rightarrow \mathbb{R}$ and corresponding frequency response H, where

$$
H(\omega)=\sum_{n=-\infty}^{\infty} h(n) e^{-i \omega n}, \quad \forall \omega
$$

Let $y(n)$ be the corresponding output signal. If

$$
h(n)=\frac{\delta(n)+\delta(n-10)}{2}
$$

and

$$
x(n)=\sin \left(\frac{2 \pi}{10} n\right)+\cos \left(\frac{2 \pi}{45} n\right),
$$

determine an appropriate DFT window size that is the same length as the period of $x(n)$. Then find the output DFT coefficients Y_{k} in terms of the input DFT coefficients X_{k}.

3. Symmetric Matrices

Prove the following: For any symmetric matrix A, any two eigenvectors corresponding to distinct eigenvalues of A are orthogonal.
Hint: Use the definition of an eigenvalue to show that $\lambda_{1}\left(v_{1} \cdot v_{2}\right)=\lambda_{2}\left(v_{1} \cdot v_{2}\right)$.

