1. Proof of Induction

Given the voltage-current relationship of an inductor $V=L \frac{d i}{d t}$, show that its complex impedance is $Z_{L}=j \omega L$.

2. L-R Filter

(a) Write the frequency response function $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}$ for the circuit.
(b) If $R=10 \Omega$ and $L=100 \mathrm{mH}$, plot the log-magnitude of $H(\omega)$ and label important magnitudes and frequencies.
(c) If $V_{\text {in }}(t)=\cos (10 t)+\cos (100 t)+\cos (1000 t)$, what is $V_{\text {out }}(t)$? (Assume that $H(-\omega)=H(\omega)$.)

Caveat: We have not yet discussed how the phase of $V_{i n}$ is affected by the circuit. Ignore this for now; assume the phase of the output is the same as the phase of the input.

3. Op-Amps: What Can't They Do?

(a) Write the frequency response function $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}$ for the circuit.
(b) If $R=1 \mathrm{k} \Omega$ and $C=100 \mathrm{nF}$, plot the log-magnitude of $H(\omega)$ and label important magnitudes and frequencies. (Again assume that $H(-\omega)=H(\omega)$.)
(c) Challenge: What does this circuit do?

Hint: You will probably need to set up the differential equation relating $V_{\text {out }}$ and $V_{i n}$ to work this out.

