Solutions: Provided by John Noonan and Quincy Huynh.

1. Proof of Induction

Given the voltage-current relationship of an inductor $V=L \frac{d i}{d t}$, show that its complex impedance is $Z_{L}=j \omega L$.
Solutions: Since $V(t)$ is an eigenfunction and impedance is a constant, then $i(t)$ is also an eigenfunction such that $\frac{d i}{d t}=j \omega \cdot i(t)$.

$$
\begin{aligned}
V & =L \frac{d i}{d t} \\
V & =L j \omega \cdot i(t) \\
V & =(j \omega L) i(t) \\
Z_{L} & =j \omega L
\end{aligned}
$$

2. L-R Filter

(a) Write the frequency response function $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}$ for the circuit.

Solutions: $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{R}}{Z_{L}+Z_{R}}=\frac{R}{j \omega L+R}=\frac{1}{j \omega_{R}^{L}+1}$
(b) If $R=10 \Omega$ and $L=100 \mathrm{mH}$, plot the log-magnitude of $H(\omega)$ and label important magnitudes and frequencies.
Solutions: $\quad \omega_{c}=\frac{R}{L}=10 / 0.100=100 \mathrm{rad} / \mathrm{s}$

(c) If $V_{\text {in }}(t)=\cos (10 t)+\cos (100 t)+\cos (1000 t)$, what is $V_{\text {out }}(t)$? (Assume that $H(-\omega)=H(\omega)$.)

Caveat: We have not yet discussed how the phase of $V_{i n}$ is affected by the circuit. Ignore this for now; assume the phase of the output is the same as the phase of the input.
Solutions: $|H(\omega)|=\frac{1}{\sqrt{\omega^{2} \frac{L^{2}}{R^{2}}+1}}=\frac{1}{\sqrt{\frac{\omega^{2}}{10000}+1}}$
$|H(10)| \approx 1$
$|H(100)|=\frac{1}{\sqrt{2}}$
$|H(1000)|=\frac{1}{10}$
$V_{\text {out }}=1 \cdot \cos 10 t+\frac{1}{\sqrt{2}} \cdot \cos (100 t)+\frac{1}{10} \cdot \cos (1000 t)$

3. Op-Amps: What Can't They Do?

(a) Write the frequency response function $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}$ for the circuit.

Solutions: By Golden Rules:

$$
\begin{aligned}
V_{n} & =V_{p} \\
i_{n} & =0 \\
i_{p} & =0
\end{aligned}
$$

$V_{n}=0$ by the first golden rule, and using the second rule with KCL, we find that:

$$
\begin{aligned}
\frac{V_{\text {in }}}{Z_{R}} & =-\frac{V_{\text {out }}}{Z_{C}} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{Z_{c}}{Z_{R}} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{1}{j \omega R C} \\
H(\omega) & =-\frac{1}{j \omega R C}
\end{aligned}
$$

(b) If $R=1 \mathrm{k} \Omega$ and $C=100 \mathrm{nF}$, plot the log-magnitude of $H(\omega)$ and label important magnitudes and frequencies. (Again assume that $H(-\omega)=H(\omega)$.)
Solutions:

(c) Challenge: What does this circuit do?

Hint: You will probably need to set up the differential equation relating $V_{\text {out }}$ and $V_{i n}$ to work this out. Solutions:

$$
\begin{aligned}
\frac{V_{i} n}{R} & =-C \frac{d V_{o} u t}{d t} \\
-\frac{1}{R C} \int V_{\text {in }} d t & =V_{\text {out }}
\end{aligned}
$$

The circuit takes in $V_{i n}$ and integrates it.

