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Sub-Cortical: Action Potentials

Electrode• Simplest scenario:
one electrode 
one neuron
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Sub-Cortical: Action Potentials

Electrode• Another possible
scenario:
one electrode 
multiple neurons

• Neuron A:
move up

• Neuron B:
move left

• Can we tell which one is 
which?
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Implication on recorded waveforms
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So How Can We Deal This?

• Where have we seen something like this before?
– Where one signal we don’t want “gets in the way” of another 

one we do want

• How did we deal with it in that case?
– Can we use the same approach this time?



Spike Sorting Work Flow

http://www.scholarpedia.org/article/Spike_sorting
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and so uncorrelated means orthogonal, i.e., uTy1 =0. Inserting this into Eq. (14.10) we find that

max
uT y1=0

var(u)≤λ2,

with equality when u=y2. As such, the second principal component is the second eigenvector of C̆ and the score for
jth observation on the second principal component is the jth element of s2 ≡AT y2.

We now apply this method to the problem of distinguishing the spikes of individual cells within a population from
knowledge only of their cumulative impact. This problem occurs when one places an electrode into the extracellular
space, common to several adjacent neurons, and records the so-called multi-unit activity over time. The large trans-
membrane action potentials of the neighboring cells are attenuated by the attending glia and extracellular fluid to
the degree that one typically only receives a noisy echo of a spike. As this low amplitude oscillatory echo resembles
(recall Chapter 5) the quasi-active response to intracellular excitation we synthesize such records by distorting the
sum of the quasi-active responses of three distinct trains of stimuli. In particular, we suppose the cells to have distinct
conductances and we suppose each to be driven by a periodic current of the form

I(t)= I0(exp(−t/τ1)−exp(−t/τ2)), I(t )= I(t+T ).

The precise values of the conductance and current parameters may be found in Table 14.1. We have coded these
cells and illustrated our findings in Figure 14.1. Each of the 98 spikelets in Figure 14.1B contains 601 samples. We
consider each trace to be a column aj ∈R601. We next remove the sample mean and construct the data matrix A per
Eq. (14.9). We need not physically construct C̆, for [Y,Sig,X]=svd(A) will return the desired principal components
in Y. The singular value decomposition of Y, see Figure 14.2, indeed permits us to cluster the spikes emanating from
distinct cells.

TABLE 14.1 The conductance and current
parameters of the three synthetic cells.

Cell gK gNa gCl I0 τ1 τ2 T

1 36 140 2 0.95 0.6 0.5 50

2 38 120 1 0.9 0.5 0.4 90

3 40 100 0.3 0.7 0.7 0.6 70
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FIGURE 14.1 A. The three spike trains and their tainted sum, corrupted by additive Gaussian noise of zero mean and standard deviation
equal to 0.1 mV. The experimentalist only has access to the latter. B. The spikelets are excised from the long train and aligned. The challenge is to
determine both how many cells are firing and to identify which spike belongs to which cell. The eye detects at least five potentially distinct clusters.
(spikepca.m)
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FIGURE 14.2 A. The singular values of the data matrix exhibit very rapid decay. This suggests that the greatest variance in the traces is captured
by the first three, and possibly four, associated singular vectors, yj . B. We compute the three score vectors, sj = ATyj , j= 1,2,3, and plot (black +)
their triples, (s1,k ,s2,k,s3,k) for the traces k = 1, . . . ,98. As we generated the spikes we know which cell gave rise to which spike. In red we used
circles to mark the spikes from cell 1, squares to mark the spikes from cell 2, and diamonds to mark the spikes from cell 3. We note that these fall
into easily separated clusters in the space of score coordinates. (spikepca.m)

14.3 SYNAPTIC PLASTICITY AND PRINCIPAL COMPONENTS

In §12.6 we learned that synapses can undergo long-term potentiation (LTP), a strengthening based on coincident
presynaptic and postsynaptic activity. LTP and the opposite change, long-term depression (LTD), are thought to be
one of the biophysical mechanisms by which learning may be implemented in neuronal networks. In this section, we
illustrate how LTP and LTD may be involved in learning associations about external inputs. We focus on the learning
stage in the simplest context. We suppose the neuron is linear and that time is discrete. In particular, vj, the neuron’s
scalar output at “time” j is assumed to be a weighted sum of its n inputs, xj ∈Rn. If we denote these weights by w ∈Rn

we find

vj =wTxj. (14.11)

We suppose that the inputs, {x1,x2, . . .}, are independent zero mean and identically distributed, and denote the common
correlation matrix by

C≡E[xjxT
j ]. (14.12)

The collection, {xj}∞j=1, is an example of a stochastic process, indexed by j. (We will devote all of Chapter 16 to such
processes). We may think of vj as the firing rate of the neuron, relative to its spontaneous value, within a short time
interval around the time point indexed by j.

Regarding rules for updating w, the natural scheme, first popularized by Hebb, is to reward cooperation by
incrementing those weights that bring about “activity” in the output, vj, from “activity” in the input, xj. As their
product, vjxj, is the simplest indicator of such “coactivity,” we posit a Hebbian learning rule of the form

wj+1 =wj +γjvjxj, (14.13)

where γj is the degree of reinforcement. As this rule can lead to runaway weight gain, it is often either clipped or
normalized via

wj+1 = wj +γjvjxj

‖wj +γjvjxj‖ . (14.14)
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A review of methods for spike sorting R61

4.2. Principal component analysis

Choosing features based on an intuitive idea of what might be useful is anad hocapproach
and, although simple, it can often yield poor cluster separation. Might there be a way of
choosing the features automatically? One method for choosing features automatically is
with principal component analysis(Glaser and Marks 1968, Glaser 1971, Gersteinet al
1983). The idea behind principal component analysis (PCA) is to find an ordered set of
orthogonal basis vectors that capture the directions in the data of largest variation. The data
are the original spikes from the recorded waveform. A sample from this data set is shown
in figure 7(a). Each waveform is centred in the spike maximum to minimize the variability
of the spike shapes.

To represent any particular data point (i.e. a spike) the principal components are scaled
and added together. The scale factor for each component is sometimes called thescore.
The ith score is calculated by

si =
∑
t

ci(t)x(t) (2)

wherex(t) is the spike andci(t) is the ith principal component. Because the components
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Figure 7. Results from principal component analysis of spike data. (a) The data used in the
analysis. (b) The first three principal components. (c) The standard deviation of the scores in
the direction of each component. (d) A scatter plot of the scores from the first two components.
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