Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

Consider the following scenario. We measure a signal from a probe surrounded by an unknown number of neurons. We then split the signal into 1 millisecond chunks and sample at about $f_s = 20kH z$. We obtain a graph with the superposition of these neuron pulses.

We now define the following values concerning our signal.

$m \approx 200$ spike traces
$n = 30$ data points

Each trace occupies a row within the following matrix, A.

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}_{m \times n}$$

The mean of these traces is as follow:

$$\bar{a}^T = \frac{1}{m} \sum_{l=1}^{m} a_l^T$$

Finally, we create something known as the zero-mean data matrix.

$$x = \begin{bmatrix} x_1^T \\ \vdots \\ x_m^T \end{bmatrix} = \begin{bmatrix} a_1^T - \bar{a}^T \\ \vdots \\ a_m^T - \bar{a}^T \end{bmatrix}$$

Let’s now back up and take a holistic view at what we are trying to do:

(a) Look at the data in the best way.
(b) Detect patterns in the data.
(c) Identify key sources of variability.
(d) Identify and exploit a reduced-dimensional space.
We will first take a look at Singular Value Decomposition (SVD) and then backtrack to Principal Component Analysis (PCA).

Any $m \times n$ matrix $X \in \mathbb{R}^{m \times n}$ can be decomposed as follows:

$$X = U\Sigma V^T$$

U is $m \times m$, V is $n \times n$, and Σ is $m \times n$. Moreover, U and V are unitary matrices: $UU^T = U^TU = I_m$ and $VV^T = V^TV = I_n$. Finally Σ is a block diagonal matrix. The matrices take the following form:

$$U = \begin{bmatrix}
| & | & | \\
\sigma_1 & \cdots & \sigma_k \\
| & | & | \\
\sigma_k & \cdots & \sigma_m \\
| & | & | \\
\sigma_m & \cdots & \sigma_m \\
| & | & |
\end{bmatrix}$$

$$V = \begin{bmatrix}
| & | & | \\
v_1 & \cdots & v_k \\
| & | & | \\
v_k & \cdots & v_n \\
| & | & | \\
v_n & \cdots & v_n \\
| & | & |
\end{bmatrix}$$

$$\Sigma = \begin{bmatrix}
D & 0 \\
0 & 0
\end{bmatrix}$$

Here, this is noting that both U and V are matrices of column vectors, and Σ is a block diagonal matrix with the upper left block being the singular values.

This looks a lot like eigenvalue decomposition for $m \times n$ matrices. The main difference is that in Σ instead of eigenvalues, we have singular values of X: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m$. These values form the main diagonal of Σ with the property that they are ordered in decreasing order, i.e. $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_m$.

Proof of Orthogonality for X:

$$X^TX = (U\Sigma V^T)^T \Sigma U^T V^T = \Sigma U^T V^T \Sigma = \Sigma^2 V^T$$

The final value in the proof above is symmetric, which shows that X^TX is symmetric, so it must be orthogonal: $X^TX = XX^T$.

Square symmetric matrices have mutually orthogonal eigenvectors corresponding to distinct eigenvalues. V is a matrix of right singular vectors and U is a matrix of left singular vectors. To get U, construct XX^T and grab its eigenvector matrix and call it U.

Singular vectors are the positive square roots of the eigenvalues of X^TX.

The maximum number of nonzero singular values is the minimum of m and n. The actual number of positive singular values is $r = \text{rank}(X)$.

Assume that we have a vector q, s.t.

$$q^TX^TXq = (Xq^T)(Xq) = ||Xq||^2 \geq 0$$

$$q = \sum \alpha_q v_i \rightarrow q^TX^TXq = \Sigma \geq 0$$
If there is no vector \(q \) where the above statement is true, then all eigenvalues are positive.

Now, we will examine Principal Component Analysis (PCA).

Say that we are after an orthogonal transformation \(V \) to create \(Y \), an \(m \times n \) matrix: \(Y = XV \). We want \(Y \) such that \(Y^T Y \) is diagonal. In essence, we are decorrelating the data.

We define \(V \) such that \(V^T \) is the scaled covariance matrix of original data.

We need to show that if \(Y = XV \) where \(X = UV \), then \(Y^T Y \) is diagonal. We define \(\wedge \) as \(\Sigma^2 \).

\[
Y^T Y = V^T X^T X V = V^T \Sigma^2 V = \wedge
\]

Lecture ends here.