

EE16B, Fall 2015

Derivation of $V_{out}(t)$ for High-Low Transition Approach #1: By separation of variables $V_{out} = -RC \frac{dV_{out}}{At}$ $dt = -RC \left(\frac{1}{V_{out}}\right) dv_{out}$ $\int dt = -RC \int \frac{1}{V_{out}} dv_{out}$ $t + C_1 = -RC \ln V_{out} = -\frac{t}{RC} + \frac{C_1}{RC} = \ln V_{out}$ $\int v_{out} t = 0, \quad V_{out} = -\frac{t}{RC} + \frac{C_1}{RC} = e^{-t/RC} e^{-t/RC}$ Twitted $A + t = 0, \quad V_{out} = V_{ou} = C$ $\int v_{out}(t) = V_{ou} e^{-t/RC}$

