Notes taken by Quincy Huynh (11/12)
Lecture given by Prof. Claire Tomlin

1. Recap

open-loop:
\[x(k+1) = Ax(k) + Bu(k) \]
\[y(k) = Cx(k) \]

closed-loop:
\[x(k+1) = A_{CL}x(k) + B_{CL}y_d(k) \]
\[x(k+1) = (A - BKC)x(k) + (BK)y_d(k) \]
\[y(k) = Cx(k) \]

For a given initial condition vector \(x_0 \) and \(k \) inputs:
\[x(k) = A^k x_0 + \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(k-2) \\ u(k-1) \end{bmatrix} \begin{bmatrix} \sigma_1 v_1 \\ \sigma_2 v_2 \\ \sigma_1 \lambda_1^{k-1} v_1 + \sigma_2 \lambda_2^{k-1} v_2 \end{bmatrix} \]

2. System Behavior - Zero Input

Consider a zero input system. \(u(k) = 0 \ \forall \ k \).
The matrix \(A \) in the system is diagonalizable, meaning that \(A \) has \(n \) linearly independent eigenvectors.

Let \(n = 2 \):
\[x_0 = \sigma_1 v_1 + \sigma_2 v_2 \]
\[x(k) = A^k (\sigma_1 v_1 + \sigma_2 v_2) \]
\[x(k) = \sigma_1 \lambda_1^k v_1 + \sigma_2 \lambda_2^k v_2 \]

We can determine the system’s behaviour for a given input from a geometric point of view. We look at \(x_1 \) and \(x_2 \), the state variables of a system and plot the trajectories of \((x_1(k), x_2(k)) \) for any given \(k \) along with their eigenvectors \(v_1 \) and \(v_2 \). If \(A \) is diagonal, then the eigenvectors \(v_1 \) and \(v_2 \) become the \(x_1 \) and \(x_2 \) axes. In general when \(A \) is diagonalizable, they are not these axes but we know they are linearly independent. When the initial condition is a scaled version of one of the eigenvectors, then the trajectory will always follow the eigenvector (tending towards 0 if the eigenvalue is less than 1 and towards \(\infty \) otherwise). Consider the following cases for \(\lambda_1 \) and \(\lambda_2 \):

Case 1:
\[\lambda_1, \lambda_2 \in \mathbb{R} \]
\[\lambda_1 = \lambda_2 > 0 \]
\[|\lambda_1| < 1, |\lambda_2| < 1 \]

Since the eigenvalues are equal, \(x(k) \) heads toward the origin in a linear fashion.

Case 2:
\[\lambda_1, \lambda_2 \in \mathbb{R} \]
\[\lambda_2 > \lambda_1 > 0 \]
\[|\lambda_1| < 1, |\lambda_2| < 1 \]

Since \(\lambda_2 > \lambda_1 \), \(x(k) \) heads toward the origin but also tends toward \(v_2 \) asymptotically like a hyperbolic curve.

Case 3:
\[\lambda_1, \lambda_2 \in \mathbb{R} \]
\[\lambda_1 > 0 > \lambda_2 \]
\[|\lambda_1| < 1, |\lambda_2| < 1 \]

Since \(\lambda_2 < 0 \), \(x(k) \) bounces from one side to the other.

Case 4:
\[\lambda_1, \lambda_2 \in \mathbb{R} \]
\[\lambda_1 > 0, \lambda_2 > 0 \]
\[|\lambda_1| > 1 > |\lambda_2| \]

Since \(|\lambda_1| > 1 \), \(x(k) \) will veer off to infinity and the origin acts like a saddle.

Case 5:

- \(\lambda_1, \lambda_2 \in \mathbb{C} \)
- \(\lambda_1 = \lambda_2^* \)
- \(|\lambda_1| < 1, |\lambda_2| < 1 \)

Because the eigenvalues and eigenvectors are complex conjugate pairs, we look at the real and imaginary components.
of the eigenvectors instead. Consider:

\[v_1 = e_1 + je_2 \]
\[v_2 = e_1 - je_2 \]
\[|\rho| < 1 \]
\[\lambda_1 = \rho e^{j\theta} \]
\[\lambda_2 = \rho e^{-j\theta} \]
\[\alpha = \alpha_1 + j\alpha_2 \]
\[x_0 = \alpha v_1 + \alpha^* v_2 \]
\[= \alpha e_1 + \alpha_2 e_2 \]
\[= \alpha_1 \text{Re}(v_1) + \alpha_2 \text{Im}v_1 \]
\[x(k) = A^k x_0 \]
\[x(k) = \alpha_1 \text{Re}(A^k v_1) + \alpha_2 \text{Im}A^k v_1 \]
\[x(k) = \alpha_1 \text{Re}(\lambda^k v_1) + \alpha_2 \text{Im}\lambda^k v_1 \]
\[x(k) = \alpha_1 \text{Re}(\rho^k (\cos(\theta k) + j\sin(\theta k))(e_1 + je_2)) + \alpha_2 \text{Im}(\rho^k (\cos(\theta k) + j\sin(\theta k))(e_1 + je_2)) \]
\[x(k) = \alpha_1 \rho^k \cos(\theta k)e_1 + \alpha_2 \rho^k \sin(\theta k)e_2 = \alpha_1 \rho^k \sin(\theta k)e_1 - \alpha_1 \rho^k \sin(\theta k)e_2 + \alpha_2 \rho^k \cos(\theta k)e_2 \]