Stability in Closed-Loop Systems

To recap, we define our closed-loop system with the following constraints:

\[x[k+1] = A_{CL}x[k] + B_{CL}r[k] \]
\[y[k] = Cx[k] \]

In the above system, we define \(A_{CL} = A - BKC \) and \(B_{CL} = BK \), where \(A, B, C, \) and \(K \) are defined as the corresponding matrix parameters of the corresponding open-loop controller to our given system.

Our goal is to make our closed-loop system stable (and hence dynamically able to withstand environmental fluctuations), and this is a goal achievable by intelligent selection of our gain matrix \(K = [k_1 \ k_2] \). We know that in order for the system to be stable, all \(|\lambda_i| < 1 \), a constraint which carries with it an implication of convergence towards a steady-state.

Now let’s dive into the mathematics used to optimize our gain matrix selection - assume for simplicity that \(A = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_2 \end{bmatrix} \), \(B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), and \(C = \begin{bmatrix} 1 & 0 \end{bmatrix} \). This is done without loss of generality - the results of the following derivation can be easily extrapolated to other configurations of \(A, B, \) and \(C \). Further assume for now that our gain matrix is simply \(1 \times 1 \) - or rather, a scalar \(K \). Substituting \(A_{CL} = A - BKC \), we yield
\[A_{CL} = \begin{bmatrix} \lambda_1 & 1 \\ -K & \lambda_2 \end{bmatrix} \]. Computing and solving the characteristic polynomial of this \(2 \times 2\) matrix yields the following expression for the eigenvalues of \(A_{CL}\):

\[\lambda_{CL} = \frac{(\lambda_1 + \lambda_2) \pm \sqrt{(\lambda_1 + \lambda_2)^2 - 4(\lambda_1 \lambda_2 + K)}}{2} \]

We now define the concept of the "root locus" - all the values of \(\lambda_{CL}\) as we vary \(K\). Let’s make an additional assumption of simplicity that \(\lambda_1 = \lambda_2 = 1\), yielding \(\lambda_{CL} = \frac{1 \pm \sqrt{4 - 4(1 + K)}}{2}\), which implies that in many instances, the resulting eigenvalues of the system will be complex - a phenomenon we wish to avoid. This is easy - we simply select values of \(K\) that are negative, and we get positive eigenvalues.

Now, if we repeat this process with a two-input system - where our gain matrix \(K\) is now defined as a \(1 \times 2\) matrix, \([k_1 \ k_2]\), our system becomes significantly more tricky to optimize. We can do this by first repeating the eigenvalue computation for \(A_{CL}\) as we did above. Solving for \(A_{CL}\) when \(K\) is \(2 \times 1\) yields

\[A_{CL} = \begin{bmatrix} \lambda_1 & 1 \\ -k_1 & \lambda_2 - k_2 \end{bmatrix} \],

which has a corresponding characteristic equation as below:

\[\lambda_{CL}^2 + (k_2 - \lambda_1 - \lambda_2)\lambda_{CL} + (k_1 - \lambda_1 k_2 + \lambda_1 \lambda_2) = 0 \]

The optimal eigenvalues to have for our system are the case when both values of \(\lambda_{CL} = 0.5\), which is obtained when the corresponding characteristic equation is \((\lambda_{CL} - 0.5)^2 = 0\), or \(\lambda_{CL} - \lambda_{CL} + 0.25 = 0\). With our grouping of terms as above, we now have a system of two equations to solve:

\[k_2 - \lambda_1 - \lambda_2 = -1 \]

\[k_1 - \lambda_1 k_2 + \lambda_1 \lambda_2 = 0.25 \]

Simply solving the above system for \(k_1\) and \(k_2\) will yield the optimal eigenvalues for our closed-loop system.