More AC Analysis

Michel M. Maharbiz
Vivek Subramanian
Impedance and Admittance

Impedance is voltage/current

\[Z = R + jX \]

- \(R \) = resistance = Re(Z)
- \(X \) = reactance = Im(Z)

Admittance is current/voltage

\[Y = \frac{1}{Z} = G + jB \]

- \(G \) = conductance = Re(Y)
- \(B \) = susceptance = Im(Y)

<table>
<thead>
<tr>
<th>Component</th>
<th>Impedance (Z)</th>
<th>Admittance (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>(Z = R)</td>
<td>(Y = \frac{1}{R})</td>
</tr>
<tr>
<td>Inductor</td>
<td>(Z = j\omega L)</td>
<td>(Y = \frac{1}{j\omega L})</td>
</tr>
<tr>
<td>Capacitor</td>
<td>(Z = \frac{1}{j\omega C})</td>
<td>(Y = j\omega C)</td>
</tr>
</tbody>
</table>
Impedance Transformation

(a) RL

\[Z_1 = R_1 + j\omega L_1 \]
Voltage & Current Division

Voltage Division

\[V_1 = \left(\frac{Z_1}{Z_1 + Z_2} \right) V_s \]

\[V_2 = \left(\frac{Z_2}{Z_1 + Z_2} \right) V_s \]

Current Division

\[I_1 = \left(\frac{Y_1}{Y_1 + Y_2} \right) I_s \]

\[I_2 = \left(\frac{Y_2}{Y_1 + Y_2} \right) I_s \]
Linear circuit techniques

• We can now apply all the techniques we learned before (for dc circuits in the time domain) to ac circuits in the phase domain:
 – Superposition
 – Thevenin / Norton Equivalents
Example: Thévenin Circuit

\[v_s(t) = 10 \cos 10^5 t \text{ (V)} \]
Example: Thévenin Circuit

\[I_s = 2 \text{ A}, \quad R_s = 5 \]

\[Z_2 = 3 + j4 \]

\[Z_1 = 6 + j8 \]

\[Z_3 = 2 - j10 \]

\[I_s = 2 \text{ A} \]

\[Z'_1 = 3.51 + j1.08 \]

\[Z_3 = 2 - j10 \]

(c) \[Z'_1 = R_s \parallel Z_1 \]
Example: Thévenin Circuit

$I_s = 2 \text{ A}$

$Z_2 = 3 + j4$

$Z_1' = 3.51 + j1.08$

$Z_3 = 2 - j10$
Example: Thévenin Circuit

\[Z_1' = 3.51 + j1.08 \]
\[Z_2 = 3 + j4 \]
\[Z_3 = 2 - j10 \]

\[Z_s' = 6.51 + j5.08 \]

(e) \[Z_s' = Z_1' + Z_2 \]
Example: Thévenin Circuit

\[Z_s' = 6.51 + j5.08 \]

\[Z_3 = 2 - j10 \]

\[Z_{Th} = Z_s' \parallel Z_3 \]

\[\frac{(6.51 + j5.08)(2 - j10)}{(6.51 + j5.08) + (2 - j10)} = (8.42 - j1.59) \Omega \]

\[R_{Th} = 8.42 \Omega, \]

\[C_{Th} = \frac{1}{1.59\omega} = 6.29 \mu F \]
Solving using Phasor Diagrams

- The relationships between current and voltage for L and C are:

 Capacitor

 \[I_C = j\omega C V_C \]

 Inductor

 \[I_L = \frac{-jV_L}{\omega L} \]

- The relationship between current and voltage for R is trivial, obviously
Solving using Phasor Diagrams

• Consider the following circuit, with $Vs=20e^{j30}$

$$I = \frac{Vs}{R + j\omega L - \frac{j}{\omega C}}$$
Solving using Phasor Diagrams

- We can find the individual voltages graphically:
 \[I = 2e^{j66.87^\circ} \text{ A} \]