
EECS 16B Designing Information Devices and Systems II
Fall 2016 Murat Arcak and Michel Maharbiz Homework 11
This homework is due November 14, 2016, at Noon.

1. Homework process and study group

(a) Who else did you work with on this homework? List names and student ID’s. (In case of homework
party, you can also just describe the group.)

(b) How long did you spend working on this homework? How did you approach it?

2. Lagrange interpolation by polynomials

Given n distinct points and the corresponding evaluations/sampling of a function f (x), (xi, f (xi)) for 0≤ i≤
n−1, the Lagrange interpolating polynomial is the polynomial of the least degree which passes through all
the given points.

Given n distinct points and the corresponding evaluations, (xi, f (xi)) for 0 ≤ i ≤ n−1, the Lagrange poly-
nomial is

Pn(x) = Σ
i=n−1
i=0 f (xi)Li(x),

where

Li(x) = Π
j=n−1
j=0; j 6=i

(x− x j)

(xi− x j)
=

(x− x0)

(xi− x0)
. . .

(x− xi−1)

(xi− xi−1)

(x− xi+1)

(xi− xi+1)
. . .

(x− xn−1)

(xi− xn−1)
.

Here is an example: for two data points, (x0, f (x0)) = (0, 4), (x1, f (x1)) = (-1, -3), we have

L0(x) =
x− x1

x0− x1
=

x− (−1)
0− (−1)

= x+1

and

L1(x) =
x− x0

x1− x0
=

x− (0)
(−1)− (0)

=−x

. Then
P2(x) = f (x0)L0(x)+ f (x1)L1(x) = 4(x+1)+(−3)(−x) = 7x+4

We can sketch those equations on the 2D plane as follows:

(a) Given three data points, (2, 3), (0, -1) and (-1, -6), find a polynomial f (x) = ax2+bx+c fitting the three
points. Do this by solving a system of linear equations for the unknowns a,b,c. Is this polynomial
unique?

(b) Like the monomial basis {1, x, x2, x3, . . .}, the set {Li(x)} is a new basis for the subspace of degree n
or lower polynomials. Pn(x) is the sum of the scaled basis polynomials. Find the Li(x) corresponding
to the three sample points in (a). Show your steps.
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(c) Find the Lagrange polynomial Pn(x) for the three points in (a). Compare the result to the answer in (a).
Are they different from each other? Why or why not?

(d) Sketch Pn(x) and each f (xi)Li(x) on the 2D plane.
(e) Show that the Lagrange interpolating polynomial must pass through all given points. In other words,

show that Pn(xi) = f (xi) for all xi. Do this in general, not just for the example above.

3. The vector space of polynomials
A polynomial of degree at most n on a single variable can be written as

p(x) = p0 + p1x+ p2x2 + · · · pnxn

where we assume that the coefficients p0, p1, . . . , pn are real. Let Pn be the vector space of all polynomials
of degree at most n.

(a) Consider the representation of p ∈ Pn as the vector of its coefficients in Rn+1.

~p =
[
p0 p1 . . . pn

]T
Show that the set Bn = {1,x,x2, . . . ,xn} forms a basis of Pn, by showing the following.

• Every element of Pn can be expressed as a linear combination of elements in Bn.
• No element in Bn can be expressed as a linear combination of the other elements of Bn.

(Hint: Use the aspect of the fundamental theorem of algebra which says that a nonzero polynomial
of degree n has at most n roots, and use a proof by contradiction.)

(b) Suppose that the coefficients p0, . . . , pn of p are unknown. To determine the coefficients, we evaluate
p on n+1 points, x0, . . . ,xn. Suppose that p(xi) = yi for 0≤ i≤ n. Find a matrix V in terms of the xi,
such that

V


p0
p1
...

pn

=


y0
y1
...

yn

 .
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(c) For the case where n = 2, compute the determinant of V and show that it is equal to

det(V ) = ∏
0≤i< j≤n

(x j− xi) .

Conclude that if x0, . . . ,xn are distinct, then we can uniquely recover the coefficients p0, . . . , pn of p.
This holds for n > 2 in general, but consider only the case where n = 2 for now.

(d) (optional) Argue using Lagrange interpolation that indeed such matrices V above must always be
invertible if the xi are distinct.

(e) We can define an inner product on Pn by setting

〈p,q〉=
∫ 1

−1
p(x)q(x)dx .

Show that this satisfies the following properties of a real inner product. (We would have to put in a
complex conjugate on p if we wanted a complex inner product.)

• 〈p, p〉 ≥ 0, with equality if and only if p = 0.
• For all a ∈ R, 〈ap,q〉= a〈p,q〉.
• 〈p,q〉= 〈q, p〉.

(f) Now that we have an inner product on Pn, we can consider orthonormality. If B = {b0,b1, . . . ,bn} is a
basis for Pn, we say that it is an orthonormal basis if

• 〈bi,b j〉= 0 if i 6= j.
• 〈bi,bi〉= 1.

We can also compute projections. For any p,u ∈ Pn,u 6= 0, the projection of p onto u is

proju p =
〈p,u〉
〈u,u〉

u .

Consider the case where n = 2. From part (a), we have the basis {1,x,x2} for P2. Convert this into an
orthonormal basis using the Gram-Schmidt process.

(g) (optional) An alternative inner-product could be placed upon real polynomials if we simply represented
them by a sequence of their evaluations at 0,1, . . . ,n and adopted the standard Euclidean inner product
on sequences of real numbers. Can you give an example of an orthonormal basis with this alternative
inner product?

4. Sampling a continuous-time control system to get a discrete-time control system
The goal of this problem is to help us understand how given a linear continuous-time system:

~̇x(t) = A~x(t)+B~u(t)

~y(t) =C~x(t)

we can sample it every T seconds and get a discrete-time form of the control system. The discretization of
the state equations is a sampled discrete time-invariant system given by

~xd(k+1) = Ad~xd(k)+Bd~ud(k) (1)

~yd(k) =Cd~xd(k) (2)
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Here, the ~xd(k) denotes ~x(kT ). This is a snapshot of the state. Similarly, the output ~yd(k) is a snapshot of
~y(kT ).

The relationship between the discrete-time input~ud(k) and the actual input applied to the physical continuous-
time system is that~u(t) =~ud(k) for all t ∈ [kT,(k+1)T ).

While it is clear from the above that the discrete-time state and the continuous-time state have the same
dimensions and similarly for the control inputs, what is not clear is what the relationship should be between
the matrices A,B and the matrices Ad ,Bd . By contrast it is immediately clear that Cd =C.

(a) Argue intuitively why if the continuous-time system is stable, the corresponding discrete-time system
should be stable too. Similarly, argue intuitively why if the discrete-time system is unstable, then the
continuous-time system should also be unstable.

(b) Consider the scalar case where A and B are just constants. What are the new constants Ad and Bd?
(HINT: Think about solving this one step at a time. Every time a new control is applied, this is a simple
differential equation with a new constant input. How does ẋ(t) = λx(t)+u evolve with time if it starts
at x(0)? Notice that x(0)eλ t + u

λ
(eλ t −1) seems to solve this differential equation.)

(c) Consider now the case where A is a diagonal matrix and B is some general matrix. What is the new
matrix Ad and Bd?

(d) Consider the case where A is a diagonalizable matrix. Use a change of coordinates to figure out the
new matrix Ad and Bd .

(e) Consider a general diagonal matrix A with distinct eigenvalues and a vector B =~b that consists of all
1s. Is the pair (A,~b) necessarily controllable? Prove that it must be or show a case where it isn’t.
(HINT: Polynomials)

(f) Now consider a 2×2 diagonal matrix A that has the same eigenvalue repeated twice and a vector B=~b.
Is it ever possible for the pair (A,~b) to be controllable? Show such a case or prove that it cannot exist.

(g) Now consider the case of complex eigenvalues for a diagonal matrix A (with all the eigenvalues dis-
tinct) with a vector B =~b that consists of all 1s. Can you find a case in which (A,~b) is controllable
but (Ad ,Bd) is not controllable? What has to be true about the sampling period T in relation to the
eigenvalues for this to happen?

5. Aliasing intuition in continuous time

The concept of “aliasing” is intuitively about having a signal of interest whose samples look identical to a
different signal of interest — creating an ambiguity as to which signal is actually present.

While the concept of aliasing is quite general, it is easiest to understand in the context of sinusoidal signals.

(a) Consider two signals,
x1(t) = acos(2π f0t +φ)

and
x2(t) = acos(2π(− f0 +m fs)t−φ)

where fs = 1/Ts. Are these two signals the same or different when viewed as functions of continuous
time t?

(b) Consider the two signals from the previous part. These will both be sampled with the sampling interval
Ts. What will be the corresponding discrete-time signals xd,1[n] and xd,2[n]? (The [n] refers to the nth
sample taken — this is the sample taken at real time nTs.) Are they the same or different?
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(c) What is the sinusoid acos(ωt + φ) that has the smallest ω ≥ 0 but still agrees at all of its samples
(taken every Ts seconds) with x1(t) above?

Contributors:

• Ioannis Konstantakopoulos.
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