EECS 16B Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 4

This homework is due September 26, 2016, at Noon.

1. Homework process and study group

- (a) Who else did you work with on this homework? List names and student ID's. (In case of homework party, you can also just describe the group.)
- (b) How long did you spend working on this homework? How did you approach it?

2. Ring oscillator

Figure 1 shows a ring oscillator circuit with three inverters. These inverters are modeled as **non-ideal** opamps using the general op-amp model we saw earlier in the semester. Remember, **our golden rules don't apply** for the models below. Each op-amp acts as an inverter with gain. The voltage inputs terminals are considered open circuits. $R_{out} = 10k\Omega$, $C_{o1} = C_{o2} = C_{o3} = 1pF$, and $K_1 = K_2 = K_3 = 2$

Figure 1: Ring Oscillator Modeled with Non-Ideal Op-Amps

(a) First, lets look at the first op-amp in the chain. For the circuit in figure 2, find the transfer function for $\frac{v_1}{v_0}$.

Figure 2: First Op-Amp in Ring Oscillator

(b) Now, let's look at three of these op-amps cascaded together as seen in figure 3. What is the transfer function for $\frac{v_3}{v_0}$? (Hint: since the input of each op-amp is an open circuit, the overall transfer function can be represented as the individual transfer functions of each amplifier cascaded together.)

Figure 3: Ring Oscillator without Feedback

- (c) Draw the bode plots for the magnitude and phase of $\frac{v_3}{v_0}$.
- (d) At what frequency is the phase of $\frac{v_3}{v_0}$ equal to $-\pi$? What is the magnitude of $\frac{v_3}{v_0}$ at that frequency? How does v_3 compare to v_0 at this frequency? An interesting consequence of this result is that this system will have a sustained oscillation when placed in feedback.

3. Warm-up: matrix powers

For real numbers, a "power" of that number is computed by recursive multiplication. For example, for a real number *x*

$$x^{1} = x$$

$$x^{2} = xx^{1} = xx$$

$$x^{3} = xx^{2} = xxx$$

$$\vdots$$

Powers of a matrix A are defined similarly as

 $A^1 = A$ $A^{k+1} = AA^k.$

(a) Compute A^2 and A^3 for the following two matrices

i.

ii.

$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} 1.1 & 1 & 0\\ 0 & 0.9 & 1\\ 0 & 0 & 0.8 \end{bmatrix}$$

(b) If A is diagonalizable as $A = PDP^{-1}$, how would you compute a general form for A^k ?

4. Transistor review

- (a) Draw a CMOS circuit (one which employs a pull-up network of PMOS transistors and pull-down network of NMOS transistors) that gives the Boolean formula $Y = A \oplus B$. For inputs, you may use *A*, *B*, \overline{A} , and \overline{B} .
- (b) Write the differential equations of the circuit below in the form $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}$. Model the PMOS as a switch with an on-resistance of R_p and threshold voltage of $|V_{th}| = 0.4V$. The voltage source $v_p(t)$ behaves as follows:

$$v_p(t) = \begin{cases} 1 \text{V for } t \le 0\\ 0 \text{V for } t > 0 \end{cases}$$

(Hint: $\vec{x}(t)$ should contain $i_L(t)$ and $v_C(t)$.)

Figure 4: Second-order circuit

Contributors:

- Brian Kilberg.
- John Maidens.
- Deborah Soung.