
EE16B - Fall’16 - Lecture 11A Notes1
1 Licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike
4.0 International License.Murat Arcak

8 November 2016

Interpolation with Basis Functions

Recall that in this method we assign to each xi a function φi(x) that
satisfies:

φi(xi) = 1 and φi(xj) = 0 when j 6= i (1)

and interpolate between the data points (xi, yi) with the function:

y = ∑
k

ykφk(x). (2)

When x = xi this expression yields y = yi as desired, because
φk(xi) = 0 except when k = i.

We refer to φi(x) as “basis functions" since our interpolation is ob-
tained from a linear combination of these functions. Basis functions
restrict the behavior of the interpolation between the data points,
thus avoiding the erratic results of polynomial interpolation.

The figure below uses triangular basis functions which lead to a
linear interpolation.
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Below we discuss three commonly used basis functions. For simplic-
ity we assume xi are in increasing order and evenly spaced:

xi+1 − xi = ∆ for all i.

This allows us to obtain basis functions φi(x) by shifting a single
function φ(x):

φi(x) = φ(x− xi). (3)
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Note that (1) holds if we define φ(x) such that

φ(0) = 1 and φ(k∆) = 0 when k 6= 0. (4)

Linear Interpolation
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When φ(x) is as depicted on the right, that is

φ(x) =

{
1− |x|∆ |x| ≤ ∆
0 otherwise,

and the basis functions are obtained from (3), then the interpolation
(2) connects the data points with straight lines. (See figure above.)

Zero Order Hold Interpolation
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When

φ(x) =

{
1 x ∈ [0, ∆)
0 otherwise

as depicted on the right, the interpolation (2) keeps y constant be-
tween the data points:
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Sinc Interpolation

The sinc function is defined as

sinc(x) ,

{
sin(πx)

πx x 6= 0
1 x = 0

and depicted below. It is continuous since limx→0
sin(πx)

πx = 1, and
vanishes whenever x is a nonzero integer.
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In sinc interpolation we let

φ(x) = sinc(x/∆)

and apply (2) with the shifted basis functions (3). To illustrate this,
the first plot below superimposes yiφ(x − xi) for three data points
i = 1, 2, 3. The second plot adds them up (blue curve) to complete the
interpolation.
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The interest in sinc interpolation is due to its smoothness – contrast
the blue curve above with the kinks of linear interpolation and the
discontinuities of zero order hold interpolation illustrated earlier.

To make this smoothness property more explicit we use the identity

sinc(x) =
1
π

∫ π

0
cos(ωx)dω (5)

which you can verify by evaluating the integral. Viewing this integral
as an infinite sum of cosine functions, we see that the fastest varying
component has frequency ω = π. Thus the sinc function can’t exhibit
variations faster than this component.

Functions that involve frequencies smaller than some constant are
called “band-limited." This notion is made precise in EE 120 with
continuous Fourier Transforms. For 16B it is sufficient to think of a
band-limited signal as one that can be written as a sum or integral of
sinusoidal components whose frequencies lie in a finite band, which
is [0, π] for the sinc function in (5).

Sampling Theorem

Sampling is the opposite of interpolation: given a function f (x) we
evaluate it at sample points xi:

yi = f (xi) i = 1, 2, 3, . . .
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Sampling is critical in digital signal processing where one uses sam-
ples of an analog sound or image. For example, digital audio is often
recorded at 44.1 kHz which means that the analog audio is sampled
44,100 times per second; these samples are then used to reconstruct
the audio when playing it back. Similarly, in digital images each pixel
corresponds to a sample of an analog image.

An important problem in sampling is whether we can perfectly re-
cover an analog signal from its samples. As we explain below, the
answer is yes when the analog signal is band-limited and the interval
between the samples is sufficiently short.

Suppose we sample the function f : R→ R at evenly spaced points

xi = ∆i, i = 1, 2, 3, . . .

and obtain
yi = f (∆i) i = 1, 2, 3, . . .

Then sinc interpolation between these data points gives:

f̂ (x) = ∑
i

yiφ(x− ∆i) (6)

where
φ(x) = sinc(x/∆),

which is band-limited by π/∆ from (5). This means that f̂ (x) in (6)
contains frequencies ranging from 0 to π/∆.

Now if f (x) involves frequencies smaller than π/∆, then it is reason-
able to expect that it can be recovered from (6) which varies as fast as
f (x). In fact the shifted sinc functions φ(x − ∆i) form a basis for the
space of functions2 that are band-limited by π/∆ and the formula (6) 2 for technical reasons this space is also

restricted to square integrable functionsis simply the representation of f (x) with respect to this basis.

Claude Shannon (1916-2001)

Harry Nyquist (1889-1976)

Sampling Theorem: If f (x) is band-limited by frequency

ωmax <
π

∆
(7)

then the sinc interpolation (6) recovers f (x), that is f̂ (x) = f (x).

By defining the sampling frequency ωs = 2π/∆, we can restate the
condition (7) as:

ωmax <
ωs

2
which states that the function must be sampled faster than twice its
maximum frequency. The Sampling Theorem was proven by Claude
Shannon in the 1940s and was implicit in an earlier result by Harry
Nyquist. Both were researchers at the Bell Labs.
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